Меню

Амперметр это сила тока или напряжение

Амперметр

Приборы для измерения силы тока

Если в каком-либо проводнике течет ток, то он характеризуется такой величиной, как «сила тока». Сила тока в свою очередь характеризуется количеством электронов, которые проходят через поперечное сечение проводника за единицу времени. Но мы все учились в школе и знаем, что электронов в проводнике миллиарды миллиардов и считать количество электронов было бы бессмысленно.

Поэтому ученые вывернулись из этой ситуации и придумали единицу измерения силы тока и назвали ее «Ампер», в честь французского физика-математика Андре Мари Ампера. Что же собой представляет 1 Ампер? Если сила тока в проводнике равна 1 амперу, то за одну секунду через поперечное сечение провода проходит заряд, равный 1 Кулону. Или простым языком, все электроны в сумме должны давать заряд в 1 Кулон и они должны в течение одной секунды пройти через поперечное сечение проводника. Если учесть, что заряд одного электрона 1.6х10 -19 , то можно узнать, сколько электронов в 1 Кулоне. А вот для того, чтобы измерять амперы, ученые придумали прибор и назвали его «амперметром».

Амперметр – это прибор для измерения силы тока в электрической цепи. Любой амперметр рассчитан на измерение токов определенной величины. В электронике в основном оперируют микроАмперами (мкА), миллиАмперами (мА), а также Амперами (А). Следовательно, в зависимости от величины измеряемого тока приборы для измерения силы тока делятся на амперметры (PA1), миллиамперметры (PA2) и микроамперметры (PA3).

На принципиальных схемах амперметр, как измерительный прибор обозначается вот так.

Какие бывают амперметры?

Первый тип амперметра – аналоговый. Их ещё называют стрелочными. Вот так они выглядят.

Такие амперметры имеют магнитоэлектрическую систему. Они состоят из катушки тонкой проволоки, которая может вращаться между полюсами постоянного магнита. При пропускании тока через катушку, она стремится установиться по полю под действием вращающего момента, величина которого пропорциональна току. В свою очередь повороту катушки препятствует специальная пружина, упругий момент которой пропорционален углу закручивания. При равновесии эти моменты буду равны, и стрелка покажет значение, пропорциональное протекающему через нее току. Иногда, для того, чтобы увеличить предел измерения, параллельно амперметру ставят резистор определенной величины, рассчитанной заранее. Это так называемый шунтирующий резистор – шунт.

Про шунтирующее действие измерительных приборов уже подробно рассказывалось в статье про вольтметр. Там же затрагивалось такое понятие, как входное сопротивление прибора. Так вот, применительно к вольтметру, его входное сопротивление должно быть как можно больше. Это необходимо для того, чтобы прибор не влиял на работу схемы при проведении измерений и выдавал точные результаты.

Применительно к амперметру складывается обратная ситуация. Так как амперметр для проведения измерений включается в разрыв электрической цепи, то необходимо стремиться к тому, чтобы его внутреннее сопротивление протекающему току было минимальным. Грубо говоря, сопротивление между его измерительными щупами должно быт мало. В противном случае, для электрической цепи амперметр будет представлять резистор. А, как известно, чем больше сопротивление резистора, тем меньший ток через него проходит. Таким образом, при включении амперметра в измерительную цепь, мы искусственно понижаем ток в этой цепи. Понятно, что в таком случае, показания амперметра будут некорректные. Но не стоит расстраиваться, так как измерительная техника разрабатывается с учётом всех этих особенностей.

Это лишь ещё один намёк на то, что при обращении с мультиметрами стоит внимательно относиться к выбору режима работы и правильному замеру тех или иных величин. Несоблюдение этих правил может привести к порче прибора.

Аналоговые амперметры до сих пор используются в современном мире. Их плюс таковы, что им не требуется независимое питание для выдачи результатов, так как они используют питание замеряемой цепи. Также они удобны при отображении информации. Думаю, лучше наблюдать за стрелкой, чем за цифрами. На некоторых амперметрах есть винтик корректировки для точного выставления стрелки прибора к нулю. Минусы – это большая инертность, то есть для стрелки прибора нужно какое-то время, чтобы она пришла в устойчивое состояние. Хоть этот недостаток в современных аналоговых приборах проявляется слабо, но он все-таки есть.

Читайте также:  Индикатор напряжения 3 положения

Второй тип амперметра – это цифровой амперметр. Он состоит из аналого-цифрового преобразователя (АЦП) и преобразует силу тока в цифровые данные, который потом отображаются на ЖК-дисплее.

Цифровые амперметры лишены инертности, и выдача результатов измерений зависит от частоты процессора, который выдает результаты на дисплей. В дорогих цифровых амперметрах он может выдать до 1000 и более результатов в секунду. Также цифровые амперметры требуют меньше габаритов для установки, что немаловажно в современной аппаратуре. Минусы – это то, что для измерения им требуется собственный источник питания, который питает все внутренние узлы и микросхемы прибора. Есть, конечно, и такие цифровые амперметры, которые используют питание измеряемой цепи, но они все равно редко используются в виду своей дороговизны.

Амперметры делятся на амперметры для измерения силы тока постоянного напряжения и для измерения силы тока переменного напряжения. Но, допустим, у вас нет амперметра, чтобы измерить силу тока переменного напряжения. Что же тогда делать? Можно собрать очень простую схемку. Выглядит она вот так:

Но чтобы не собирать самостоятельно измерительную схему и доводить её до ума, купите себе мультиметр. В хорошем мультиметре есть функции измерения силы тока, как для постоянного, так и для переменного напряжения.

Схема для измерения силы тока выглядит вот так:

Это означает, что амперметр мы должны подключать последовательно нагрузке.

Для того чтобы правильно измерить силу тока, нам надо знать, какое напряжение вырабатывает источник питания: переменное или постоянное. Если будем замерять силу тока постоянного напряжения, то и амперметр нам нужен для измерения силы тока постоянного напряжения, а если для переменного, то и амперметр нужен соответствующий. В нашем случае нагрузкой может быть любой прибор или схема, которая потребляет ток. Это может быть лампочка, сотовый телефон или даже компьютер.

Измерение силы тока с помощью амперметра.

Давайте рассмотрим на практике, как замерять силу тока с помощью цифрового мультиметра DT-9202A.

В красном кружочке у нас буковка «А

» означает, что ставя переключатель на этот участок, мы сможем замерить силу тока переменного напряжения, а ставя переключатель на секцию со значком «А=» (в синем кружке), мы сможем замерять силу тока постоянного напряжения.

Чтобы измерить силу тока до 200 мА (200m) как переменного, так и постоянного напряжения, нужно поставить щупы такого мультиметра в определенные клеммы:

Если же мы будем измерять силу тока более чем в 5 Ампер, то я рекомендую вам переставить щуп в другую клемму:

Если даже примерно не знаете, сколько должно потреблять ваше устройство или нагрузка, то всегда ставьте щуп и переключатель на самый большой предел измерения. Тем самым вы сохраните своему прибору жизнь.

На фото снизу я измеряю силу тока, которая кушает лампочка на 12 Вольт. С трансформатора я снимаю переменное напряжение 10 Вольт. Как мы видим, сила тока, потребляемая лампочкой — 1.14 Ампер. Обратите особое внимание, что переключатель мультиметра поставлен на измерение силы тока переменного напряжения (А

А вот так мы замеряем постоянный ток, который потребляет автомобильная сирена. Орет она так, что даже уши закладывает .

Обратите также внимание, так как у нас аккумулятор постоянного напряжения 12 Вольт, то и переключатель режимов мультиметра мы поставили на измерение постоянного тока.

А вот столько у нас кушает лампочка: 1.93 Ампера. Здесь замеряется постоянный ток, который потребляется лампой накаливания от аккумулятора.

Никогда не подключайте амперметр в розетку без всякой нагрузки! Тем самым вы просто-напросто спалите прибор. Как уже говорилось, амперметр обладает малым входным сопротивлением.

Читайте также:  Как выбрать кабель высокого напряжения по мощности

При измерении силы тока не касайтесь голых проводов, а также оголённых частей измерительных щупов. Это исключит электрический удар током. Будьте внимательны со схемой подключения амперметра.

Если Вы хотите узнать больше про измерения электрических величин, то загляните на сайт Практическая электроника. Там вы найдёте много познавательной информации по электронике.

Источник

Амперметр это сила тока или напряжение

Для измерения токов и напряжений в электрических цепях используются амперметры и вольтметры, основным элементом которых служит гальванометр – прибор, предназначенный для измерения величин токов. Эти измерения могут быть основаны на одном из действий тока: тепловом, физическом, химическом. Гальванометр, градуированный на величину тока, называется амперметром. По закону Ома (8) напряжение и сила тока связаны прямо пропорциональной зависимостью, поэтому гальванометр можно градуировать и на напряжение. Такой прибор называют вольтметром.

В этом задании мы не будем касаться вопросов, связанных с конкретным устройством электроизмерительных приборов, с их системами и принципами работы. Остановимся лишь на требованиях, предъявляемых к внутренним сопротивлениям амперметров и вольтметров. Важно, чтобы при включении в цепь для измерений эти приборы вносили как можно меньшее искажение в измеряемую величину.

Амперметр включается в цепь последовательно. Если сопротивление амперметра `R_»а»` и его подключают к участку цепи с сопротивлением `R_»ц»` (рис. 7а), то эквивалентное сопротивление участка цепи и амперметра в соответствии с (13) равно `R=R_»ц»+R_»а»=R_»ц»(1+(R_»а»)/(R_»ц»))`.

Отсюда следует, что амперметр не будет заметно изменять сопротивление участка цепи, если его собственное (внутреннее) сопротивление будет мало по сравнению с сопротивлением участка цепи.

Чтобы добиться этого, гальванометр снабжают шунтом (синоним – добавочный путь): вход и выход гальванометра соединяются некоторым сопротивлением, обеспечивающим параллельный гальванометру дополнительный путь для тока (рис. 7 б). Поэтому внутреннее сопротивление амперметра меньше, чем у применённого в нём гальванометра. (Читателю рекомендуется лично убедиться в этом с помощью соотношения (14).) Амперметр называется идеальным, если его внутреннее сопротивление можно считать равным нулю.

Вольтметр подключается к электрической цепи параллельно тому участку, напряжение на котором требуется измерить. Присоединив, например, вольтметр с сопротивлением `R_»в»` параллельно лампочке с сопротивлением `R_»л»` (рис. 8 а), получим участок цепи, эквивалентное сопротивление которого вычисляется по формуле (14) `R=R_»л» (R»в»)/(R_»л»+R_»в»)`.

Отсюда следует, что чем больше сопротивление вольтметра по сравнению с сопротивлением лампочки, тем меньше эквивалентное сопротивление будет отличаться от сопротивления лампочки. Вывод: чтобы процесс измерения меньше искажал значение измеряемого напряжения, собственное (внутреннее) сопротивление вольтметра должно быть как можно больше. Поэтому в вольтметре последовательно гальванометру включают некоторое сопротивление (рис. 8б). Внутреннее сопротивление такого вольтметра, как правило, во много раз больше сопротивления входящего в него гальванометра. Вольтметр называется идеальным, если его внутреннее сопротивление можно считать бесконечно большим.

Каждый измерительный прибор рассчитан на определённый интервал значений измеряемой величины. И в соответствии с этим проградуирована его шкала. Для расширения пределов измерений в амперметре можно использовать добавочный шунт, а в вольтметре – добавочное сопротивление. Найдём значения этих сопротивлений, увеличивающих максимальную измеряемую величину тока или напряжения в раз.

Источник

Амперметр

Что такое амперметр

Амперметр — это измерительный прибор, позволяющий определить силу тока и напряжение в электрической цепи («ампер» — единица измерения, названная так в честь французского физика/математика/естествоиспытателя Андре-Мари Ампера, «метрио» — измерять).

Прибор широко применяется в промышленности, народном хозяйстве, энергетике, радиоэлектронике; может использоваться в научных целях, а также в бытовых (например, для выявления неисправностей электрооборудования в автомобиле, замера силы тока аккумулятора и др.).

Какие бывают разновидности, что измеряют

  • аналоговые (магнитоэлектрические, электромагнитные, электродинамические, ферродинамические);
  • цифровые.

Аналоговые

Принцип работы магнитоэлектрических амперметров строится на взаимосвязи магнитного поля и находящейся в его корпусе подвижной катушки. Такие приборы отличаются низким электропотреблением, высокой чувствительностью и точностью измерений.

Читайте также:  Стабилизатор напряжения приборной панели фольксваген т4

К недостаткам магнитоэлектрических амперметров можно отнести некоторые конструктивные особенности. Магнитоэлектрический амперметр измеряет силу лишь постоянного тока.

Устройство электромагнитных амперметров проще: они не имеют движущейся катушки; внутри корпуса имеется особое приспособление и один, либо несколько сердечников, установленных на оси. Эти приборы обладают меньшей чувствительностью (в сравнении с магнитоэлектрическими), следовательно, точность их измерений ниже. Однако ими возможно измерение силы как постоянного, так и переменного тока, что характеризует их, как универсальные.

Работа электродинамических амперметров основывается на взаимодействии электрических полей токов, проходящих по электромагнитным катушкам. Прибор состоит из подвижной и неподвижной катушек и является универсальным. Недостаток: очень большая чувствительность (реагируют на самые незначительные магнитные колебания; возникают помехи), поэтому электродинамические амперметры применяются только в защищенном экраном месте.

Конструкция ферродинамического амперметра состоит из замкнутого ферримагнитного провода, сердечника и неподвижной катушки. Магнитные поля возле прибора не оказывают сколь-нибудь существенного влияния на точность измерений, поэтому его показания предельно точны и, в целом, работа прибора — надежна и эффективна.

Цифровые

Цифровой амперметр является более сложной конструкцией, включающей аналогово-цифровой преобразователь, где осуществляется конверсия силы тока в цифровые показатели, которые отражаются на ЖК-дисплее.

Плюсы: небольшие размеры, удобство использования, точность измерений. Такому типу амперметров не страшны вибрации или незначительные механические удары и на сегодняшний день он все шире используется в промышленности и в быту.

Кроме того, возможно деление амперметров по виду тока:

  • для переменного;
  • для постоянного.

Включение амперметра в электрическую цепь

Перед тем, как включить амперметр, важно учесть следующие моменты:

  • замеряемый в цепи электрический ток не должен превышать максимально допустимого для данного прибора;
  • при включении в цепь необходимо соблюдать полярность.

При проведении измерений следует обеспечить абсолютное отсутствие вибраций в месте установки амперметра.

Действия при подключении прибора:

  1. Определяются входящий и выходящий контакты, их полярность; положительный контакт окрашен в красный цвет, отрицательный — в черный (на некоторых моделях возможен еще один контакт, вероятнее всего, зеленого цвета — заземление).
  2. В зависимости от того, в цепи с каким током (постоянным или переменным) будут проводиться замеры, переключатель прибора ставится в положение «AC» или «DC»: первые символы обозначают цепь с переменным током, вторые — с постоянным.
  3. В любом месте, между источником питания и устройством-энергопотребителем, производится разрыв одного провода электрической цепи.
  4. Амперметр последовательно включается в цепь.

Как только движение стрелки или смена цифр на дисплее прекратятся, снимаются показания.

Погрешность

Выяснить значение силы тока с предельной ясностью невозможно, поэтому принято учитывать показания приборов с погрешностью. Погрешность (отклонение выходного сигнала от истинного значения входного) выступает одной из основных характеристик любых средств измерений.

Различаются несколько видов погрешностей:

  1. Абсолютная — разность между показанием прибора и истинным (действительным) значением измеряемой величины (абсолютная погрешность с обратным знаком называется поправкой).
  2. Относительная — является соотношением абсолютной погрешности к истинному (действительному) значению измеряемой величины.
  3. Приведенная — отношение абсолютной погрешности к нормирующему значению, выраженное в % (нормирующее — условно принятое значение, которое может быть равным конечному значению диапазона измерений (предельному значению шкалы устройства).

Погрешность характеризуется классом точности, а именно — значением приведенной погрешности в %.

Класс точности указывается числом предпочтительного рода. К примеру, 0,05. Применяется для приборов, у которых предел допускаемой приведенной погрешности постоянен на всех отметках рабочей части шкалы. Подобным образом обозначаются классы точности и амперметров.

Пределы измерения

Амперметр имеет несколько диапазонов измерения тока. Выбор диапазона осуществляется при помощи переключателя. Шкала приборов градуируется в следующих значениях: мкА (микроампер), мА (миллиампер), А (ампер), кА (килоампер). В соответствии с требуемой точностью и пределами измерения выбирается подходящий. Изменение (увеличение) пределов измеряемой величины тока возможно посредством включения в электрическую цепь специальных устройств:

  • шунт (резистор);
  • трансформатор тока;
  • магнитный усилитель.

Источник

Adblock
detector