Меню

Амплитуда напряжения в последовательном колебательном контуре

Колебательный контур: принцип работы, виды контуров, параметры и характеристики

Колебательным контуром называют цепь, состоящая из конденсатора и катушки индуктивности.
(Для лучшего понимания работы колебательного контура рекомендую ознакомиться с страницами «Конденсаторы и способы их соединения» и «Катушка индуктивности»)
На рис.1 приведена схема контура, а на рис.2 — график, иллюстрирующий работу этого контура.
Когда переключатель SA1 установлен в положение 1 , то конденсатор С заряжается от батареи GB1 до напряжения этой батареи Uc .
При переводе переключателя в положение 2 конденсатор начинает разряжаться через катушку индуктивности L до момента t1 ( рис.2b ).
Если бы конденсатор разряжался через активное сопротивление, то этот процесс продлился какое то время до полного разряда конденсатора и на этом все и закончилось. Но катушка имеет интересное свойство — при протекании электрического тока он превращается в магнитную энергию поля вокруг катушки.
Заряд конденсатора уменьшается, а ток в катушке увеличивается и магнитное поле поле тоже. Катушка как бы аккумулирует электрический заряд конденсатора в магнитное поле.

При полном разряде конденсатора ток в катушке уменьшается, и магнитные силовые линии начинают «сужаться» к катушке пересекая ее витки, чем вызывает появлению ЭДС самоиндукции обратной полярности, которая «помогает» удержаться уменьшающемуся току и заряжает конденсатор с новой полярностью. Этот момент показан на рис.2с , когда конденсатор заряжен, а ток в катушке прекратился.
В следующий момент конденсатор начинает снова разряжаться через катушку. На рис.2d он уже полностью разрядился и ток Iк максимален.
Далее магнитное поле опять «сужается», а ЭДС опять заряжает конденсатор ( рис.2е ).

Эти электрические колебания представляют собой, по существу, синусоидальный контурный ток Iк .
Если рассматривать контур как идеальным (без потерь), то колебания будут незатухающими, т.е. будут продолжаться вечно. Но идеальных контуров нет и поэтому в реальном колебательном контуре колебания будут затухать тем быстрее, чем больше потери этого контура.

Частота собственных колебаний контура (ее еще называют резонансной частотой fp ) зависит от индуктивности катушки и емкости конденсатора и вычисляется по формуле Томсона из которой видно, что чем меньше значения емкости и индуктивности, тем выше собственная частота контура:

Можно определить индуктивность или емкость контура по известной частоте fp:

L=253•10 2 /f 2 p•C; C=253•10 2 /f 2 p•L.

Последовательный колебательный контур

В колебательном контуре можно получить незатухающие колебания, если подключить его к источнику переменного тока.
Если источник подключен последовательно с катушкой L и конденсатором С , то такая цепь называется последовательным колебательным контуром ( рис.3 ).

При подключении внешнего источника к контуру в нем возникают не собственные (свободные) колебания контура, которые определяются значениями L и C , а с частотой напряжения источника U=Um∙sinω∙t .
Такие колебания контура называются вынужденными .
При вынужденных колебаниях элементы контура L, C будут иметь, в зависимости от частоты источника, определенные индуктивное XL и емкостное Xc сопротивления и соответствующие падения напряжения UL, Uc на них.
Но контур имеет не только реактивные сопротивления, а еще и активное cопротивление потерь R , которое в основном равно сопротивлению провода катушки.

Так как в катушке и конденсаторе напряжения сдвинуты относительно тока на разные фазовые углы, то более наглядно их можно показать на векторных диаграммах ( рис.4 )

Напряжение на индуктивном сопротивлении UL опережает ток на 90° , а напряжение на емкостном сопротивлении Uc отстает от тока на такой же угол 90° И получается, что векторы UL и Uc сдвинуты между собой на 180° , т.е. находятся в противофазе.
Вектор напряжения на источнике U будет равен геометрической сумме напряжения вектора UR и вектора разницы напряжений реактивных сопротивлений UL-Uc .

Как видно из диаграммы рис.4а при UL > Uc напряжение внешнего источника опережает ток в колебательном контуре на угол φ и находится выше оси абcцисс в зоне напряжений индуктивности. Значит в данном случае контур имеет сопротивление индуктивного характера.
При UL ( рис.4b ) вектор источника уже будет отставать от вектора тока на угол φ и контур будет иметь емкостное сопротивление.

Полное сопротивление контура Z будет равно:

Амплитудное значение тока Im определяется по формуле:

где Um — амплитудное напряжение источника, а ω -его угловая частота.

Читайте также:  Как снять напряжение трубы

получается наибольшее значение тока и имеет место явление, которое называется резонансом .
Резонанс возникает при условии совпадения частоты источника напряжения с собственной частотой колебания контура.

На рис.5 показан график характеристик зависимости тока Iк и полного сопротивления Z последовательного контура от частоты.

Чтобы понять природу электрического резонанса рассмотрим механический резонанс.
Явление резонанса можно наблюдать на опыте как показано на рис.6 .
Здесь на натянутой общей нитке привязаны три пары шаров 1-1′, 2-2′, 3-3′ каждый из которых представляет собой маятник.
Если раскачать рукой шар 1 , то начинает раскачиваться и шар 1 ‘, тогда как все другие шары остаются неподвижными. Точно так же, если раскачать шар 3 , начнет раскачиваться только шар 3 .
Этот механический резонанс объясняется следующим образом.
В нашем опыте собственные частоты каждой пары маятников одинаковы, т.к. шары одинаковые и длина их нитей тоже одинакова.
Раскачиваясь, маятник 1 передает по общей нитке свои колебания остальным маятникам. Но эти колебания раскачивают только маятник 1′ потому, что его частота собственных колебаний совпадает с частотой «толчков» общей нити от маятника 1 . Так как эти «толчки» совпадают с тактом собственной частоты маятника 1′ , то его амплитуда раскачивания все больше и больше возрастает и может стать больше амплитуды раскачивающего маятника 1 .

Так же, примерно, происходит и при электрическом резонансе.
Представим себе маятник 1 источником колебаний, а маятник 1′ — колебательным контуром.
Маятник 1 , допустим, будет качаться с постоянной амплитудой и частотой.
Маятник 1′ не сможет сразу достичь амплитуды и частоты маятника 1 потому, что раскачать мгновенно общую нить до резонансной частоты и амплитуды будут мешать различные тормозящие процессы — сопротивление воздуха, инерционность, провис нити и т.д. Это будет выглядеть как торможение тока контура индуктивным и емкостным сопротивлениеми при несовпадении частоты источника и контура.
С течением времени маятник 1 раскачает маятник 1′ до своей частоты и амплитуды. Начнется процесс резонанса.
Амплитуда маятника 1′ будет расти до какого то значения, пока сила «подталкивания» не уравновесится противоположной силой торможения.
Так же и в контуре резонансный ток не может возрастать бесконечно.

При резонансе амплитуда тока в контуре равна:

Напряжение на индуктивном сопротивлении —

на емкостном сопротивлении —

Tак как XL=Xc , то вектора UL и Uc будут равны (UL=Uc) , но противоположно направлены ( рис.7 ).
Вектор напряжения U источника совпадает с вектором тока I и равен по величине напряжению на активном сопротивлении UR .
Отсюда следует, что при резонансе контур оказывает источнику сопротивление активного характера R который не дает амплитуде напряжения Um увеличиваться до бесконечности:

При резонансе отношение между напряжением на индуктивном сопротивлении и напряжением источника будет равно добротности Q катушки:
А добротность контуров, применяемых в радиотехнике, большая. Поэтому напряжение на катушке может превышать в сотни раз напряжение источника.
Но так как при резонансе напряжение на катушке равно напряжению на конденсаторе, значит отношение напряжения на конденсаторе к напряжению источника тоже будет равно добротности:

Для примера на рис.8 показана схема последовательного контура с реальными значениями элементов схемы и параметров, а так же полученные величины напряжений на этих элементах. Отсюда видно, что напряжение на катушке и конденсатотре при резонансе будет больше напряжения источника в Q раз.

Резонанс в последовательном колебательном контуром называют резонансом напряжения, т.к. напряжение на реактивных элементах при резонансе становится больше напряжения внешнего источника.

Способность колебательного контура создавать интенсивные колебания на одной частоте (точнее в узкой полосе частот) и почти не реагировать на сигналы других частот называется избирательностью.
Избирательность S численно показывает во сколько раз ослабляются посторонние сигналы по сравнению с колебаниями резонансной частоты ( рис.9 ):
где I(▲f) — ток в контуре при расстройки контура на ▲f .

Полосой пропускания контура называют полосу частот, в пределах которой ток в контуре уменьшается не более, чем в заданное число раз по сравнению с током при резонансе ( рис.10 ):

где — k коэффициент пропорциональности, указывающий на каком уровне резонансного тока Ip измеряется полоса пропускания.

Читайте также:  Шкаф для стабилизатора напряжения своими руками

Для k=1 — уровень Ik = 0,707·Ip и

В электрических схемах колебательный контур связан с источником сигнала разными способами — непосредственно, индуктивною или емкостной связью.
Если контур связан с источником И индуктивно ( рис.11 ), то контур будет являтся последовательным, т.к. в катушке колебательного контура индуктируется ЭДС, что равносильно последовательному включению источника с L и С .

Такая связь применяется в радиоприемниках для связи антенны с контуром( рис.12 ).
С помощью конденсатора переменной емкости можно настраивать контур в резонанс с нужной радиостанцией.
В этом случае контурный ток, вызванный сигналом этой радиостанции, становится относительно большим, в то время как контурные токи, вызванные другими станциями, ничтожно малы.
Напряжение между точками a — b , вызванное большим резонансным током, подается к следующим каскадам приемника.

Параллельный колебательный контур

В параллельном колебательном контуре источник сигнала соединен с катушкой индуктивности и конденсатором параллельно (рис.11).
При подаче переменного напряжения на контур происходит обмен энергиями между конденсатором и катушкой, но только в цепи внутри контура.

Для возникновения резонанса в нем, как и в последовательном контуре, необходимыми условиями являются равенство емкостного Хс и индуктивного ХL сопротивлений, а так же равенство частоты собственных колебаний контура и частоты колебаний источника тока.
Только резонанс в параллельном колебательном контуром, в отличии от резонанса в последовательном контуре, называют резонансом тока.

В идеальном параллельном контуре (без потерь) вектора индуктивного Ic и емкостного тока IL (при ХL=Xc ) при резонансе будут направлены в противоположные стороны и суммарный ток будет обращаться в нуль ( рис.14a ). А это значит, что сопротивление контура будет стремится к бесконечности.
Но в реальном параллельном контуре существует сопротивление потерь R которое сосредоточено в основном в индуктивности ( рис 14b ) и поэтому, даже при резонансе ток в контуре уже не равен нулю, а равен активной составляющей тока в цепи катушки — Iк=IL+IR.
Значит полное сопротивление контура Z будет уже не бесконечно, а равно:

На рис.15 показан график характеристик зависимости тока Iк и полного сопротивления Z параллельного контура от частоты.

Можно сделать вывод: в цепи параллельного контура существуют два тока — ток от источника I протекающий через активное сопротивление потерь катушки и реактивный ток контура Iк .
Внутри контура протекают реактивный ток довольно таки большой величины:

но он потребляет малый ток от источника, который необходим лишь для компенсации потерь в контуре:

Добротность Q параллельного контура, в отличии от последовательного контура, показывает во сколько раз ток в элементах контура больше потребления тока источника:

На рис.16 дан конкретный пример параллельного колебательного контура, где видно, что ток контура больше тока источника в Q раз.

В радиоприемниках так же применяется непосредственная связь колебательного контура с антенной, т.е. контур включен параллельно источнику сигнала ( рис.17 ).
Переменным конденсатором настраиваем контур на частоту сигнала нужной радиостанции. При резонансе контурный ток, вызванный нужной радиостанцией, становится относительно большим, а сопротивление контура тоже большим.Поэтому между точками а и b получается значительное напряжение.
Для других станций контур представляет малое сопротивление и сигнал радиостанции уходит в «землю».

Источник

Резонанс напряжений в последовательном колебательном контуре

В радиотехнике широкое применение имеют электрические цепи, составленные из катушки индуктивности и конденсатора. Такие цепи в радиотехнике называются колебательными контурами. Источник переменного тока к колебательному контуру может быть присоединен двумя способами: последовательно (рисунок 1а) и параллельно (рисунок 1б).

Рисунок 1. Схемотическое обозначение колебательного контура. а) последовательный колебательный контур; б) параллельный колебательный контур.

Рассмотрим поведение колебательного контура в цепи переменного тока при последовательном соединении контура и источника тока (рис 1а).

Мы знаем, что такая цепь оказывает переменному току реактивное сопротивление, равное:

где RL— активное сопротивление катушки индуктивности в ом;

ωL,-индуктивное сопротивление катушки индуктивности в ом;

1/ωC-емкостное сопротивление конденсатора в ом.

Активное сопротивление катушки RL практически очень мало изменяется при изменении частоты (если пренебречь поверхностным эффектом). Индуктивное и емкостное сопротивления в очень сильной степени зависят от частоты, а именно: индуктивное сопротивление ωL увеличивается прямо пропорционально частоте тока, а емкостное сопротивление 1/ωC уменьшается при повышении частоты тока, т. е. оно связано с частотой тока обратно пропорциональной зависимостью.

Читайте также:  Укажите чему равен период т колебания эдс источника синусоидального напряжения

Отсюда непосредственно следует, что реактивное сопротивление последовательного колебательного контура также зависит от частоты, и колебательный контур будет оказывать токам разных частот неодинаковое сопротивление.

Если мы будем измерять реактивное сопротивление колебательного контура при различных частотах, то обнаружим, что в области низких частот сопротивление последовательного контура очень велико; при увеличении частоты оно уменьшается до некоторого предела, а затем начинает снова возрастать.

Объясняется это тем, что в области низких частот ток испытывает большое сопротивление со стороны конденсатора, при увеличении же частоты начинает действовать индуктивное сопротивление, компенсирующее действие емкостного сопротивления.

При некоторой частоте индуктивное сопротивление становится равным емкостному, т. е.

Они будут взаимно компенсировать друг друга и общее реактивное сопротивление контура станет равным нулю:

При этом реактивное сопротивление последовательного колебательного контура будет равно только его активному сопротивлению, так как

При дальнейшем повышении частоты ток будет испытывать все большее и большее сопротивление со стороны индуктивности катушки, при одновременном уменьшении компенсирующего действия емкостного сопротивления. Поэтому реактивное сопротивление контура начнет снова возрастать.

На рисунке 2а приведена кривая, показывающая изменение реактивного сопротивления последовательного колебательного контура при изменении частоты тока.

Рисунок 2. Резонанс напряжений. а) зависимость изменения полного сопротивления от частоты; б) зависимость реактивного сопротивления от активного сопротивления контура; в) кривые резонанаса.

Частота тока, при которой сопротивление колебательного контура делается наименьшим, называется частотой резонанса или резонансной частотой колебательного контура.

При резонансной частоте имеет место равенство:

пользуясь которым, нетрудно определить частоту резонанса:

(1)

Единицами в этих формулах служат герцы, генри и фарады.

Из формулы (1) видно, что чем меньше величины емкости и самоиндукции колебательного контура, тем больше будет его резонансная частота.

Величина активного сопротивления RL не влияет на резонансную частоту, однако от нее зависит характер изменения Z. На рисунке 2б приведен ряд графиков изменения реактивного сопротивления колебательного контура при одних и тех же величинах L и С, но при разных RL. Из этого рисунка видно, что чем больше активное сопротивление последовательного колебательного контура, тем тупее становится кривая изменения реактивного сопротивления.

Теперь рассмотрим, как будет изменяться сила тока в колебательном контуре, если мы будем изменять частоту тока. При этом мы будем считать, что напряжение, развиваемое источником переменного тока, остается все время одним и тем же.

Так как источник тока включен последовательно с L и С контура, то сила тока, протекающего через катушку и конденсатор, будет тем больше, чем меньше реактивное сопротивление колебательного контура в целом, так как

Отсюда непосредственно следует, что при резонансе сила тока в колебательном контуре будет наибольшей. Величина тока при резонансе будет зависеть от напряжения источника переменного тока и от активного сопротивления контура:

На рисунке 2г изображен ряд графиков изменения силы тока в последовательном колебательном контуре при изменении частоты тока так называемых кривых резонанса. Из этого рисунка видно, что чем больше активное сопротивление контура, тем тупее кривая резонанса.

При резонансе сила тока может достигать огромных значений при сравнительно малой внешней ЭДС. Поэтому падения напряжения на индуктивном и емкостном сопротивлениях контура, т. е. на катушке и на конденсаторе, могут достигать очень больших величии и далеко превосходить величину внешнего напряжения.

Последнее утверждение на первый взгляд может показаться несколько странным, однако нужно помнить, что фазы напряжений на емкостном и индуктивном сопротивлениях сдвинуты друг относительно друга на 180°, т. е. мгновенные значения напряжений на катушке и конденсаторе направлены всегда в противоположные стороны. Вследствие этого большие напряжения, существующие при резонансе внутри контура на его катушке и конденсаторе, ничем не обнаруживают себя вне контура, взаимно компенсируя друг друга.

Разобранный нами случай последовательного резонанса называется резонансом напряжений, так как в этом случае в момент резонанса имеет место резкое увеличение напряжения на L и С колебательного контура.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Adblock
detector