Меню

Амплитуда выходного напряжения выпрямителя

Выпрямители: Однофазный однополупериодный выпрямитель

Простейшим выпрямителем является схема однофазного однополупериодного выпрямителя (рис. 3.4-1а). Графики, поясняющие его работу при синусоидальном входном напряжении \(U_ <вх>= U_ <вх max>\sin<\left( \omega t \right)>\) , представлены на рис. 3.4-1б.

Рис. 3.4-1. Однофазный однополупериодный выпрямитель (а) и временные диаграммы, поясняющие его работу (б)

На интервале времени \(\left[ <0;>T/2 \right]\) полупроводниковый диод выпрямителя смещен в прямом направлении и напряжение, а следовательно, и ток в нагрузочном резисторе повторяют форму входного сигнала. На интервале \(\left[ T/2 <;>T \right]\) диод смещен в обратном направлении и напряжение (ток) на нагрузке равно нулю. Таким образом, среднее значение напряжения на нагрузочном резисторе будет равно:

где \(U_<вх д>\) — действующее значение переменного напряжения на входе выпрямителя.

Аналогично, для среднего тока нагрузки:

где \(I_\) — максимальная амплитуда выпрямленного тока.

Действующее значение тока нагрузки \(I_<н д>\) (через диод протекает такой же ток):

Отношение среднего значения выпрямленного напряжения \(U_<н ср>\) к действующему значению входного переменного напряжения \(U_<вх д>\) называется коэффициентом выпрямления (\(K_<вып>\)). Для рассматриваемой схемы \(K_ <вып>= <0,45>\).

Максимальное обратное напряжение на диоде \(U_ <обр max>= U_ <вх max>= \pi U_<н ср>\) , т.е. более чем в три раза превышает среднее выпрямленное напряжение (это следует учитывать при выборе диода для выпрямителя).

Спектральный состав выпрямленного напряжения имеет вид (разложение в ряд Фурье):

Коэффициент пульсаций, равный отношению амплитуды низшей (основной) гармоники пульсаций к среднему значению выпрямленного напряжения, для описываемой схемы однополупериодного выпрямителя равен:

Как видно, однополупериодное выпрямление имеет низкую эффективность из-за высокой пульсации выпрямленного напряжения.

Еще один отрицательный аспект однополупериодного выпрямления связан с неэффективным использованием силового трансформатора, с которого берется переменное напряжение. Это обусловлено тем, что в токе вторичной обмотки трансформатора существует постоянная составляющая, равная среднему значению выпрямленного тока. Такая составляющая не трансформируется, т.е.:

\(I_1 \cdot w_1 = \left( I_2 – I_ <н ср>\right) w_2\) ,

где \(I_1\), \(I_2\) — токи первичной и вторичной обмоток, а \(w_1\), \(w_2\) — число витков первичной и вторичной обмоток трансформатора.

Временнáя диаграмма тока первичной обмотки трансформатора (рис. 3.4-2) подобна диаграмме тока вторичной обмотки, но смещена на величину \(I_ <н ср>\cfrac\).

Рис. 3.4-2. Временная диаграмма токов в первичной и вторичной обмотках силового трансформатора, нагруженного на схему однофазного однополупериодного выпрямителя

В сердечнике трансформатора за счет постоянной составляющей тока вторичной обмотки создается постоянный магнитный поток \(\Phi_0 = w_2 \cdot I_0\). Это явление принято называть вынужденным намагничиванием сердечника трансформатора. Оно может вызвать насыщение магнитной системы трансформатора, т.е. увеличение тока холостого хода, действующего значения первичного тока и следовательно, расчетной мощности первичной обмотки трансформатора, что обусловливает увеличение необходимых размеров трансформатора в целом.

Дополнительный минус однополупериодного выпрямления состоит в наличии участка стабильного тока, что также снижает эффективность использования трансформатора по мощности. Максимальный коэффициент использования трансформатора по мощности для такой схемы не превышает \(k_ <тр P>\approx <0,48>\).

Для снижения уровня пульсаций на выходе выпрямителя включаются разнообразные индуктивно-емкостные фильтры. Наличие конденсаторов и индуктивностей в цепи нагрузки оказывает значительное влияние на работу выпрямителя.

В маломощных выпрямителях обычно применяют простейший емкостный фильтр, который представляет собой конденсатор, включенный параллельно нагрузке (рис. 3.4-3).

Рис. 3.4-3. Схема однофазного однополупериодного выпрямителя с емкостным фильтром (а) и временные диаграммы, поясняющие его работу (б)

В установившемся режиме работы, когда напряжение на входе выпрямителя \(U_<вх>\) больше напряжения на нагрузке \(U_н\) и диод выпрямителя открыт, конденсатор будет подзаряжаться, накапливая энергию, поступающую от внешнего источника. Когда же напряжение на входе выпрямителя упадет ниже уровня открывания диода и он закроется, конденсатор начнет разряжаться через \(R_н\), предотвращая при этом быстрое падение уровня напряжения на нагрузке. Таким образом, результирующее напряжение на выходе выпрямителя (на нагрузке) окажется уже не таким пульсирующим, а будет значительно сглажено, причем тем сильнее, чем большую емкость будет иметь применяемый конденсатор.

Обычно, емкость конденсатора фильтра выбирают такой, чтобы его реактивное сопротивление было намного меньше сопротивления нагрузки (\(1/ \omega C \ll R_н\)). В этом случае пульсации напряжения на нагрузке малы и допустимо предполагать, что это напряжение постоянно (\(U_н \approx \)). Примем: \(U_н = U_ <вх max>\cos<\beta>\), где \(\beta\) — некоторая константа, определяющая значение напряжения на нагрузке. Очевидно, что в общем случае \(\beta\) зависит от емкости конденсатора, сопротивления нагрузки, частоты входного напряжения и т.п. Физический смысл этой величины можно понять из временных диаграмм, приведенных на рис. 3.4-4. Как видно, \(\beta\) отражает длительность временного интервала в одном периоде колебаний внешнего напряжения, когда диод выпрямителя находится в открытом состоянии (\(\beta = \omega \cdot t_<откр>/2\)). Угол \( \beta\) принято называть углом отсечки.

Рис. 3.4-4. График зависимости \(A(\beta)\)

Для тока, протекающего через диод в открытом состоянии, можно записать:

где \(r\) — активное сопротивление, обусловленное сопротивлением диода в открытом состоянии и сопротивлением вторичной обмотки трансформатора (иногда его называют сопротивлением фазы выпрямителя).

Среднее за период значение выпрямленного тока диода (учитывая, что диод открыт только на участке \(\varphi = \left[\pi/2 – \beta ; \pi/2 + \beta \right]\):

Формула (3.4.2) очень важна при расчете выпрямителя. Ведь угол отсечки \(\beta\) не является заранее известным исходным параметром, как правило, его приходится вычислять на основании заданных выходного напряжения (\(U_н\)), сопротивления (\(R_н\)) или тока нагрузки (\(I_н\)), а также параметров применяемого диода и трансформатора (которые определяют сопротивление фазы \(r\)). Располагая этими данными и учитывая (3.4.2) можно определить значение коэффициента \(A\):

\(A \left( \beta \right) = \cfrac \pi r> \)

Средний ток через диод \(I_<д ср>\) равен среднему току нагрузки \(I_<н ср>\), а учитывая, что напряжение на нагрузке предполагается неизменным, то и мгновенное значение тока через нагрузку равно току диода: \(I_н = I_<д ср>\). Таким образом:

\(A \left( \beta \right) = \cfrac \pi r> = \cfrac<\pi r> \)

Для нахождения угла отсечки \(\beta\) при известном коэффициенте \(A(\beta)\) на практике обычно пользуются графиком (рис. 3.4-4).

Максимальное значение тока диода достигается при \(U_ <вх>= U_<вх max>\) в момент времени, когда \(\varphi = \pi/2 \), т.е. согласно выражения (3.4.1):

Читайте также:  Технические мероприятия обеспечивающие безопасность работ со снятием напряжения плакаты

И далее, учитывая (3.4.2) получим:

График функции \(F(\beta)\) представлен на рис. 3.4-5. Из него видно, что с уменьшением угла отсечки \(\beta\) существенно увеличивается амплитуда тока через вентили.

Рис. 3.4-5. График зависимости \(F(\beta)\)

Таким образом, емкостный характер нагрузки выпрямителя приводит к тому, что выпрямительный диод оказывается открытым в течение меньшего промежутка времени, а амплитуда тока, проходящего в это время через диод, оказывается больше, чем в аналогичной схеме, работающей на чисто активную нагрузку. Этот факт необходимо учитывать при выборе диода, который должен выдерживать повторяющийся ток соответствующей амплитуды и более того, нормально переносить первоначальный всплеск тока при включении, когда происходит первоначальная зарядка конденсатора.

Указанная закономерность справедлива не только для описываемой схемы однофазного однополупериодного выпрямления. Аналогичным образом будет происходить работа и других рассматриваемых далее схем, имеющих нагрузку емкостного характера.

Требуемый коэффициент пульсаций на выходе однофазного однополупериодного выпрямителя с емкостным фильтром \(K_п\) может быть получен при правильном выборе емкости сглаживающего конденсатора. Для ее нахождения используется следующая формула:

где \(H(\beta)\) — это еще один вспомогательный коэффициент, значение которого находится по графику (рис. 3.4-6).

Рис. 3.4-6. График зависимости \(H(\beta)\)

Емкостный фильтр характерен для выпрямителей, рассчитанных на малые токи нагрузки. При больших токах обычно применяют индуктивные фильтры. Такой фильтр представляет собой катушку индуктивности (обычно с ферромагнитным сердечником), включенную последовательно с нагрузкой (рис. 3.4-7). Наличие индуктивности в цепи нагрузки также как и емкость оказывает значительное влияние на режим работы вентилей выпрямителя.

Рис. 3.4-7. Схема однофазного однополупериодного выпрямителя с индуктивным фильтром (а) и временные диаграммы, поясняющие его работу (б)

Работа схемы на рис. 3.4-7 описывается уравнением:

Приняв ток в цепи в начальный момент времени \((t = 0)\) равным нулю, решив данное уравнение получим следующее выражение для тока в цепи нагрузки:

где \( \theta = \operatorname \left( \cfrac<\omega L> \right) \)

Временная диаграмма, отражающая эту зависимость приведена на рис. 3.4-7(б). По ней хорошо виден физический смысл константы \(\theta\). Она представляет собой угол, на который запаздывает основной всплеск тока в нагрузке относительно инициирующего его всплеска напряжения на входе выпрямителя.

Если проанализировать зависимость тока нагрузки \(I_н(t)\), можно заметить, что его амплитуда с увеличением индуктивности катушки падает (соответственно падает и его среднее значение). Т.е. среднее значение напряжения на нагрузке оказывается меньшим, чем в случае отсутствия индуктивности, уменьшаются также пульсации выходного напряжения. Сами колебания тока оказываются сдвинутыми относительно колебаний входного напряжения на угол \(\theta\). Это является причиной скачкообразного приложения к диоду в момент его запирания отрицательного обратного напряжения величиною до \(U_ <обр>= U_<вх max>\).

Описанный режим работы вентилей (затягивание тока, уменьшение его амплитуды, скачкообразное приложение обратного напряжения) при наличии индуктивного фильтра характерен для всех схем выпрямителей. Индуктивный фильтр обычно применяют в схемах мощных выпрямителей, поскольку в этом случае требуемая для существенного изменения параметров выходного напряжения индуктивность оказывается незначительной.

Наиболее эффективно сглаживание пульсаций выпрямленного напряжения осуществляется с помощью сложных многозвенных фильтров, в состав которых входят и катушки индуктивности и конденсаторы (основой таких фильтров являются т.н. Г- или П-образные звенья).

Источник

Амплитуда выходного напряжения выпрямителя

Выпрямители

Назначение выпрямителя

Выпрямители используются для превращения переменного напряжения в постоянное. Их схемотехника состоит в том, чтобы направить входной переменный ток таким образом, чтобы через выходную нагрузку он протекал только в одном направлении. Выпрямители бывают пассивные и активные. В пассивных выпрямителях используются приборы с односторонней проводимостью – диоды. В активных выпрямителях используются электронные коммутационные элементы (MOSFET, IGBT, биполярные), включаемые по определенному алгоритму с синхронизацией с полярностью входного напряжения. Поэтому они часто называются синхронными выпрямителями.

Часто выпрямитель устанавливается сразу после трансформатора. Это справедливо как для низкочастотных, так и для высокочастотных схем. Поэтому схемотехника выпрямителей будет представлена в связке с трансформатором и пока только с резистивной нагрузкой.

Однополупериодный выпрямитель

Самая простая схема выпрямления (рисунок RECT.1). Всего один диод. В течение положительной полуволны диод открыт и напряжение прикладывается к нагрузке. Соответственно через нагрузку течет ток. Во время отрицательной полуволны диод закрыт, и ток через нагрузку не протекает. В результате максимальная амплитуда напряжения на нагрузке VR меньше амплитуды входного переменного напряжения VA на величину VF – прямого падения напряжения на диоде:

Выходное напряжение имеет форму полусинусоидальных волн (рисунок RECT.2) чередующихся паузами длительностью полпериода. Трансформатор нагружен только в периоды прямой проводимости диода. Максимальное напряжение на диоде равно удвоенному входному максимальному напряжению 2VA.

Рисунок RECT.1 — Электрическая схема однополупериодного выпрямителя

Рисунок RECT.2 — Форма временных диаграмм напряжений на входе (синий) и выходе (красный) однополупериодного выпрямителя

— только один диод, минимальная сложность схемы, минимальная стоимость выпрямления;

— высокие пульсации напряжения в нагрузке;

— подмагничивание сердечника трансформатора, неравномерная нагрузка на сеть (относится к низкочастотным трансформаторам, и импульсным двухтактным схемам) вследствие того, что мощность потребляется только в течение половины периода.

— в обратноходовых и прямоходовых однотактных преобразователях;

— в дополнительных цепях питания, имеющих существенном меньшую нагрузку по сравнению с основной.

Мостовой выпрямитель

Наиболее распространенная двухполупериодная схема выпрямления (рисунок RECT.3).Четыре диода, включенные таким образом, что работают попеременно. В течение положительного полупериода ток проводят диоды VD2 и VD3, в течение отрицательного – VD1 и VD4. Таким образом, мостовой выпрямитель обеспечивает подключение нагрузки к источнику в течение всего периода переменного напряжения. Выходное напряжение имеет форму полусинусоидальных волн, следующих друг за другом (рисунок RECT.4). Амплитуда напряжения на нагрузке меньше амплитуды входного переменного напряжения на величину 2VF – сумму падения напряжения на диодах, поскольку в мостовой схеме ток проходит через два диода:

Именно поэтому применение мостовой схемы нецелесообразно при низких входных напряжениях (менее 12-15 В) поскольку «все упадет» на диодах.

Максимальное напряжение на диодах равно единичному входному максимальному напряжению VA.

Читайте также:  Задача источнику тока с напряжением 12 в

Рисунок RECT.3 — Электрическая схема мостового выпрямителя

Рисунок RECT.4 Форма временных диаграмм напряжений на входе (синий) и выходе (красный) мостового выпрямителя

— малые пульсации напряжения в нагрузке;

— обеспечивает симметричную нагрузку трансформатора (без подмагничивания);

— нет необходимости в использовании хитрого трансформатора со средней точкой.

— четыре диода, определенная сложность схемы,

— высокий относительный уровень потерь (низкий КПД) при малом входном напряжении.

— в выходных выпрямителях двухтактных преобразователей при высоком выходном напряжении (более 15 В);

— в схемах с низкочастотным трансформатором;

— во входной цепи преобразователей с бестрансформаторным входом;

— в дополнительных цепях питания.

Двухполупериодный выпрямитель со средней точкой трансформатора

Основная схема выпрямления для малых выходных напряжений (12 В и менее). Особенность схемы состоит в использовании фактически двух выходных обмоток трансформатора, соединённых вместе так, чтобы напряжение на выводах обмоток относительно общей точки было противоположно по фазе (рисунок RECT.5). При этом в течение одного полупериода «работает» обмотка «1» с диодом VD1, а в другом полупериоде «работает» обмотка «2» с диодом VD2. При этом «полусинусоиды» поочередно складываются в результирующее напряжение на нагрузке, имеющее форму полуволн следующих друг за другом, как в мостовом преобразователе (рисунок RECT.6). Амплитуда напряжения на нагрузке меньше амплитуды входного переменного напряжения на величину VF – прямого падения напряжения на диоде:

В некотором роде этот выпрямитель представляет собой два однополупериодных выпрямителя включенных параллельно друг другу, но питающихся от обмоток находящихся в противофазе. Максимальное напряжение на диодах равно удвоенному входному максимальному напряжению 2VA.

Рисунок RECT.5 — Электрическая схема двухполупериодного выпрямителя со средней точкой

Рисунок RECT.6 — Форма временных диаграмм напряжений на входе (синий – VA1, зеленый – VA2) и выходе (красный) двухполупериодного выпрямителя со средней точкой

— малые пульсации напряжения в нагрузке;

— обеспечивает симметричную нагрузку трансформатора (без подмагничивания);

— всего два диода, меньше в двухполупериодных схемах не бывает;

— высокая энергетическая эффективность, в том числе при малых выходных напряжениях.

— использование хитрого трансформатора с отводом от средней точки или соединенных двух обмоток, кроме этого габаритная мощность трансформатора должна быть выше по сравнению с мостовой схемой;

— два диода, сравнительная сложность схемы подключения вследствие необходимости соблюдать фазировку обмоток трансформатора;

— высокий относительный уровень потерь (низкий КПД) при малом входном напряжении.

— в выходных выпрямителях двухтактных преобразователей, в том числе при низком выходном напряжении (более 15 В);

— в схемах с низкочастотным трансформатором;

— в сильноточных и низковольтных цепях.

В реальности амплитуды напряжений обмоток (и их мощности) могут несколько отличаться друг от друга. Это необходимо контролировать экспериментально.

Работа выпрямителей совместно с конденсатором фильтра

Как правило, выпрямители работают в связке с конденсатором фильтра выполняющим функцию буферного накопителя энергии и сглаживающим пульсации напряжения. Эта схема включения выпрямителей имеет свои особенности. Об этом ниже.

Однополупериодный выпрямитель с конденсатором фильтра

Рисунок RECT.7 — Электрическая схема однополупериодного выпрямителя с конденсатором фильтра

Рисунок RECT.8 — Форма временных диаграмм входного напряжения (синий), выходного напряжения на конденсаторе (красный) и напряжения на диоде (желтый) характеризующие работу однополупериодного выпрямителя с конденсатором фильтра

Каждый из циклических периодов работы схемы однополупериодного выпрямителя с конденсатором фильтра можно условно разделить на два интервала (рисунок RECT.8):

I – в течение первого интервала когда напряжение источника превышает текущее значение напряжения на конденсаторе, диод находится в прямом смещении и проводит ток который подзаряжает конденсатор фильтра.

II – в течение второго интервала, который начинается когда напряжение источника становится меньше напряжения на только что подзаряженном конденсаторе фильтра, при этом к диоду приложено обратное напряжение и он не проводит ток. В этом интервале напряжение на фильтрующем конденсаторе плавно уменьшается в результате разряда током нагрузки. Величина обратного напряжения приложенного к диоду складывается из напряжения на конденсаторе VC и напряжения источника (обратная полуволна). Таким образом, в точке максимума к диоду фактически прикладывается удвоенное напряжение источника.

Резюме: Подзаряд конденсатора фильтра происходит только один раз в течение всего периода. К диоду прикладывается удвоенное напряжение питания выпрямителя.

Мостовой выпрямитель с конденсатором фильтра

Рисунок RECT.9 — Электрическая схема мостового выпрямителя с конденсатором фильтра

Рисунок RECT.10 — Форма временных диаграмм входного напряжения (синий), выходного напряжения на конденсаторе (красный) и напряжения на диодах VD2, VD3 (желтый) и VD1, VD4 (зеленый) характеризующие работу мостового выпрямителя с конденсатором фильтра

В данном случае каждый из циклических периодов работы схемы однополупериодного выпрямителя с конденсатором фильтра можно условно разделить на четыре интервала (рисунок RECT.10):

I – в течение первого интервала текущее значение напряжения источника (положительная полуволна) превышает напряжение на конденсаторе, диоды VD2, VD3 в открыты прямом смещении и ток источника подзаряжает конденсатор фильтра. При этом к диодам VD1, VD4 прикладывается обратное напряжение равное VA (которое в этот период достигает своего максимума):

VF – прямого падения напряжения на диоде.

II – в течение второго интервала, который начинается когда напряжение источника становится меньше напряжения на подзаряженном конденсаторе фильтра к диодам VD2, VD3прикладывается запирающее напряжение. В этот период все диоды моста находятся в закрытом состоянии и напряжение между ними перераспределятся по закону (рисунок RECT.10):

Напряжение на фильтрующем конденсаторе VC плавно уменьшается в результате разряда током нагрузки.

III – в течение третьего интервала в момент когда напряжение отрицательной полуволны превышает напряжение на конденсаторе, другая пара диодов VD1, VD4 открывается и снова подзаряжается конденсатор фильтра. При этом уже к другой паре диодов VD2, VD3 прикладывается обратное напряжение равное VA (которое в этот период достигает своего максимума).

IV – в течение четвертого интервала, который начинается когда напряжение источника становится меньше напряжения на подзаряженном конденсаторе фильтра к диодам VD2, VD3прикладывается запирающее напряжение. В этот период все диоды моста находятся в закрытом состоянии и напряжение между ними перераспределятся по закону (рисунок RECT.10):

Читайте также:  Чем снять напряжение глаз капли

В течение интервала напряжение на фильтрующем конденсаторе плавно уменьшается в результате разряда током нагрузки.

Резюме: Подзаряд конденсатора фильтра происходит два раза в течение всего периода. Максимальное обратное напряжение, прикладываемое к диоду равно амплитуде напряжения питания выпрямителя.

Двухполупериодный выпрямитель со средней точкой с конденсатором фильтра

Рисунок RECT.11 — Электрическая схема двухполупериодного выпрямителя со средней точкой с конденсатором фильтра

Рисунок RECT.12 — Форма временных диаграмм входного напряжения (синий и зеленый), выходного напряжения на конденсаторе (красный) и напряжения на диодах VD1 (желтый) и VD2 (малиновый) характеризующие работу двухполупериодного выпрямителя со средней точкой с конденсатором фильтра

Аналогично мостовому выпрямителю каждый из циклических периодов работы схемы однополупериодного выпрямителя с конденсатором фильтра можно условно разделить на четыре интервала (рисунок RECT.12):

I – в течение первого интервала текущее значение напряжения VA1 верхней обмотки превышает напряжение на конденсаторе, диод VD1 в открыт и к конденсатор фильтра подзаряжается. При этом диоду VD2 прикладывается обратное напряжение сумме напряжений обмотки трансформатора VA2 (которое в этот период достигает своего максимума) и напряжения на конденсаторе VC:

Рисунок RECT.11 — Электрическая схема двухполупериодного выпрямителя со средней точкой с конденсатором фильтра

Рисунок RECT.12 — Форма временных диаграмм входного напряжения (синий и зеленый), выходного напряжения на конденсаторе (красный) и напряжения на диодах VD1 (желтый) и VD2 (малиновый) характеризующие работу двухполупериодного выпрямителя со средней точкой с конденсатором фильтра

II – в течение второго интервала, который начинается когда напряжение на верхней обмотке становится меньше напряжения на подзаряженном конденсаторе фильтра CF к диоду VD1 прикладывается запирающее напряжение. В этот период оба диода находятся в закрытом состоянии и напряжение между ними перераспределятся по закону (рисунок RECT.12):

В течение интервала напряжение на конденсаторе фильтра плавно уменьшается в результате разряда током нагрузки.

III – в течение третьего интервала аналогично интервалу I когда текущее значение напряжения VA2 верхней обмотки превышает напряжение на конденсаторе, диод VD2открывается и конденсатор фильтра подзаряжается. К диоду VD1 прикладывается обратное напряжение сумме напряжений обмотки трансформатора VA1 (которое в этот период достигает своего максимума) и напряжения на конденсаторе VC:

IV – в течение четвертого интервала, который начинается когда напряжение на нижней обмотке VA2 становится меньше напряжения на подзаряженном конденсаторе фильтра к диоду VD2 прикладывается запирающее напряжение. В этот период оба диода находятся в закрытом состоянии и напряжение между ними перераспределятся по закону (рисунок RECT.12):

В течение интервала напряжение на конденсаторе фильтра плавно уменьшается в результате разряда током нагрузки.

Резюме: Подзаряд конденсатора фильтра происходит два раза в течение всего периода. Максимальное обратное напряжение, прикладываемое к диоду равно удвоенной амплитуде напряжения на обмотке VA1, VA2.

Расчет емкости конденсатора при заданном уровне пульсаций напряжения на выходе мостового выпрямителя с конденсатором фильтра

Напряжение на входе и выходе мостового выпрямителя имеет вид, представленный на рисунке RECT.13 [Источники вторичного электропитания с бестрансформаторным входом. Бас А.А., Миловзоров В.П., Мусолин А.К. М.: Радио и Связь, 1987. 160 с.]. Там же представлены формы импульсов тока через диоды и тока нагрузки.

Рисунок RECT.13 — Форма временных диаграмм входного напряжения (синий), выходного напряжения на конденсаторе (красный), тока нагрузки (желтый) и токов через диоды VD2, VD3 (оранжевый) и VD1, VD4 (зеленый) характеризующие работу мостового выпрямителя с конденсатором фильтра

Видно, что энергия, запасаемая в конденсаторе фильтра передается в нагрузку в течение времени:

θ – угол в радианах (часть периода) в течение которого осуществляется заряд конденсатора.

Количество переданной энергии равно:

P – мощность, потребляемая нагрузкой.

С другой стороны, количество переданной энергии также равно:

VC_max – максимальное напряжение на конденсаторе фильтра;

ΔVС – абсолютные значения пульсаций напряжения на конденсаторе фильтра;

Cf – емкость конденсатора фильтра.

Приравнивая эти выражения для количества переданной энергии получим:

То можно выразить емкость конденсатора, обеспечивающую заданный уровень пульсаций:

При малом уровне пульсаций можно полагать, что:

Iload_rms – среднеквадратичное значение тока нагрузки;

Vout_ rms – среднеквадратичное значение напряжения на нагрузке.

Или сокращая множители в числителе и знаменателе получаем выражения для расчета емкости конденсатора фильтра Сf обеспечивающий заданный уровень пульсаций ΔVС (при условии синусоидальной форме напряжения):

VC_max – максимальное напряжение на конденсаторе фильтра;

ΔVС – абсолютные значения пульсаций напряжения на конденсаторе фильтра;

Iload_rms – действующее (среднеквадратичное) значение тока нагрузки;

Здесь максимальное напряжение на конденсаторе фильтра VC_max меньше амплитуды входного переменного напряжения VA на величину падения напряжения на выпрямителе Vrect:

Соотношения для расчета емкости конденсатора для двухполупериодного выпрямителя со средней точкой с конденсатором фильтра аналогично.

Расчет амплитуды импульсов тока при заданном уровне пульсаций напряжения на выходе мостового выпрямителя с конденсатором фильтра

Оценим амплитуду импульсов тока через диоды мостового выпрямителя.

Длительность импульса тока Δtθ составляет:

Принимаем, что амплитуда пульсаций тока незначительна и ток через нагрузку можем считать постоянным и равным среднему току нагрузки Iload_avg, тогда заряд, протекающий через нагрузку в течение половины периода равен:

Форма импульсов тока через выпрямительные диоды хорошо аппроксимируется треугольником с высотой равной амплитудному значению тока IVD_max и шириной основания равной длительности Δtθ . Тогда заряд, протекающий через диоды за полупериод равен:

Из равенства электрического заряда проходящего через диоды полумоста QVD и заряда проходящего через нагрузку Qload в течение полупериода следует соотношение:

Откуда следует выражение для определения амплитуды импульсов тока:

Подставляя в которое выражение для длительности импульса тока Δtθ получаем:

VC_max – максимальное напряжение на конденсаторе фильтра;

ΔVС – абсолютные значения пульсаций напряжения на конденсаторе фильтра;

Iload_avg – среднее значение тока нагрузки;

Расчет по данным соотношениям имеет погрешность порядка 20-30 % (но в большую сторону, то есть с запасом).

Соотношения для расчета пульсаций напряжения на выходе двухполупериодного выпрямителя со средней точкой с конденсатором фильтра аналогично.

Источник

Adblock
detector