Меню

Arduino mega измерение напряжения питания

«Arduino» вольтметр

Вольтметр — устройство для измерения напряжения в цепи. Этот пост является наглядным пособием для постройки вольтметра постоянного напряжения на Ардуино с LCD дисплеем. Он теоретически может измерять напряжение до 55 В. При необходимости вы сможете самостоятельно внести небольшие изменения в схему и скетч, для увеличения верхнего измеряемого значения.

Требуемое оборудование

Для изготовления простого цифрового вольтметра своими руками в домашних условиях понадобятся:

  • Arduino uno
  • 16×2 LCD жидкокристаллический дисплей
  • Резистор 100 кОм
  • Резистор 10 кОм
  • Потенциометр 10 кОм
  • Макетная плата
  • Провода (перемычки)

Arduino измерение напряжения

Верхний предел аналоговых выводов Arduino составляет 5 вольт. Для измерения напряжения до 5 В можем напрямую подключить источник напряжения к аналоговому выводу Arduino. В случае измерения напряжения выше 5 В необходимо использовать делитель напряжения. Он защитит от перегрузки по напряжению выходы микроконтроллера. Схема делителя напряжения состоит из двух резисторов, в нашем случае 100 кОм и 10 кОм.

Делитель напряжения

Номиналы резисторов берутся в зависимости от необходимого верхнего предела измерения. Если быть точными, то нас интересует не столько номиналы резисторов, сколько их отношение. Номиналы подбираются по формуле:

R1/R2=Uin/Uout1

Где R1 и R2 — это номиналы необходимых нам сопротивлений.
Uout — это напряжение на выходе делителя. В нашем случае 5 Вольт. Как уже писалось выше, это максимальное значение, которое мы сможем скормить Ардуино.
Uin — это напряжение на входе делителя, который является верхним пределом измерения вольтметра. В нашем случае 55В.
В качестве примера возьмём равенство для нашего делителя:

100000/10000=55/51

Равенство выполняется, значит всё верно. Если вам нужен вольтметр с другим верхним пределом, можете подставить своё значение Uin. И подобрать свои резисторы с необходимым отношением.

«Arduino вольтметр», схема подключения

На схеме выше изображено подключение к Ардуино LCD дисплея справа и делителя, состоящего из двух резисторов слева. Потенциометр на 10кОм необходим для регулировки подсветки дисплея.

Программа (скетч)

Программа ниже использует библиотеку LiquidCrystal. Эта библиотека содержит функции, необходимые для записи результатов измерения на ЖК-дисплей.
Цикл считывает аналоговое значение аналогового входа, и потом вычисляет фактическое значение напряжения. Результат расчета напряжения записывается на ЖК-дисплей.

Поверка вольтметра

Поверка вольтметра заключается в сравнении показаний вольтметра на ардуино с рабочим вольтметром (мультиметром). Если значения отличаются, нужно проверить напряжение на пинах Ардуино 5V и GND. Напряжение может слегка отличаться от 5 вольт. Например, 4,95 В. Тогда в формуле temp = (analogvalue * 5.0) / 1024.0 нужно значение 5 заменить на 4,95. И также необходимо проверить точное сопротивление резисторов R1 и R2 и в строчки float r1=100000.0 и float r2=10000.0 вписать свои значения. После такой поверки мы получим точный вольтметр на Ардуино. Данный прибор способен измерять напряжение до сотых вольт.
И напоследок хотел бы предостеречь вас. Использовать данный вольтметр для измерения 55 вольт не рекомендуется. Это максимальный предел. При незначительном скачке измеряемого напряжения микроконтроллер выйдет из строя. Необходимо дать некий запас для непредвиденных ситуаций. И ограничить диапазон измеряемого напряжения до 45 вольт.

Источник

Arduino AREF пин: измеряем точное напряжение

В этом материале мы рассмотрим, как можно с большей точностью измерять меньшие напряжения, используя аналоговые выводы Arduino или совместимой плате вместе с выводом AREF.

Обзор

Вы можете вспомнить, что вы можете использовать функцию Arduino analogRead() для измерения напряжения электрического тока от датчиков и т.п., используя один из выводов аналогового входа. Значение, возвращаемое функцией analogRead(), должно быть в диапазоне от 0 до 1023, где ноль представляет собой ноль вольт, а 1023 представляет рабочее напряжение используемой платы Arduino.

И когда мы говорим, рабочее напряжение — это напряжение, доступное Arduino после схемы питания. Например, если у вас есть типичная плата Arduino Uno и вы запускаете ее через разъем USB (для платы есть доступные 5 В через разъем USB на вашем компьютере), то напряжение немного уменьшается, поскольку ток идет через всю схему к микроконтроллеру или USB-источник может не давать абсолютное значение.

Это можно легко продемонстрировать, подключив Arduino Uno к USB и установив мультиметр для измерения напряжения на контактах 5В и GND. Некоторые платы возвращают напряжение до 4,8 В, некоторые показывают значения выше 4,8 В, ниже 5 В. Поэтому, если вы стремитесь к точности, питайте вашу плату от внешнего источника питания через разъем постоянного тока или Vin-контакт, например, 9 В постоянного тока. Затем, после этого, пройдя через цепь регулятора мощности, вы получите хорошее напряжение 5 В.

Это важно, поскольку точность любых значений analogRead() будет зависеть от отсутствия истинных 5 В. Если у вас нет никакой опции, вы можете использовать некоторые математические расчеты в своем эскизе, чтобы компенсировать падение напряжения. Например, если ваше напряжение равно 4,8 В — диапазон analogRead() от 0 до 1023 будет относиться к 0

5 В. Это может звучать тривиально, однако, если вы используете датчик, который возвращает значение в виде напряжения (например, датчик температуры TMP36) — рассчитанное значение будет неверным. Поэтому в интересах точности используйте внешний источник питания.

Почему analogRead() возвращает значение от 0 до 1023?

Это связано с разрешением АЦП. Разрешение (в рамках этой статьи) — это степень, в которой что-то может быть представлено численно. Чем выше разрешение, тем выше точность, с которой что-то можно представить. Мы измеряем разрешение в терминах количества бит разрешения.

Например, 1-битное разрешение позволит использовать только два (два в степени одного) значения — ноль и единицу. 2-битное разрешение позволило бы получить четыре (два в степени двух) значения — ноль, один, два и три. Если мы попытаемся измерить диапазон в пять вольт с двухбитным разрешением, а измеренное напряжение будет равно четырем вольтам, наш АЦП вернет числовое значение 3 — при падении четырех вольт между 3,75 и 5В. Проще представить это с изображением выше.

Таким образом, в нашем примере АЦП с 2-битным разрешением может представлять напряжение только с четырьмя возможными результирующими значениями. Если входное напряжение падает между 0 и 1,25, АЦП возвращает цифру 0; если напряжение падает между 1,25 и 2,5, АЦП возвращает числовое значение 1. И так далее. С диапазоном АЦП нашего Arduino от 0 до 1023 — у нас есть 1024 возможных значения — или от 2 до 10, поэтому у наших Arduino есть АЦП с 10-битным разрешением.

Что такое AREF?

Когда ваш Arduino берет аналоговое показание, он сравнивает напряжение, измеренное на используемом аналоговом выводе, с так называемым опорным напряжением. При обычном использовании аналогового чтения эталонное напряжение — это рабочее напряжение платы.

Читайте также:  Напряжение тока в промышленности

Для более популярных плат Arduino, таких как платы Uno, Mega, Duemilanove и Leonardo / Yún, рабочее напряжение 5В. Если у вас есть плата Arduino Due, рабочее напряжение составляет 3,3 В. Таким образом, если у Вас есть опорное напряжение 5 В, каждый блок, возвращаемого analogRead() оценивается в 0.00488 В. (Это рассчитывается путем деления 1024 на 5В). Что если мы хотим измерить напряжения между 0 и 2 или 0 и 4,6? Как АЦП узнает, что составляет 100% от нашего диапазона напряжений?

И в этом заключается причина существования вывода AREF. AREF означает Analog Reference. Это позволяет нам «скормить» Arduino опорное напряжение от внешнего источника питания. Например, если мы хотим измерить напряжения с максимальным диапазоном 3,3 В, мы бы подали хорошие плавные 3,3 В на вывод AREF, например, от ИС регулятора напряжения.

Тогда каждый шаг АЦП будет представлять около 3,22 милливольт (разделить 1024 на 3,3В). Обратите внимание, что самое низкое опорное напряжение вы можете иметь 1.1В. Существует две формы AREF — внутренняя и внешняя, поэтому давайте их проверим.

Внешний AREF

Внешний AREF тот, куда направляется внешний источник опорного напряжения на плате Arduino. Это может происходить от регулируемого источника питания, или, если вам нужно 3,3 В, вы можете получить его от 3,3 В вывода Arduino. Если вы используете внешний источник питания, обязательно подключите GND к выводу GND Arduino. Или, если вы используете источник 3,3 В Arduno — просто установите перемычку с контакта 3,3 В на контакт AREF.

Чтобы активировать внешний AREF, используйте следующее в void setup ():

Это устанавливает опорное напряжение на то, что вы подключили к пину AREF, что, конечно, будет иметь напряжение между 1,1В и напряжением работы платы.

Очень важное примечание — при использовании внешнего опорного напряжения вы должны установить analogReference() на EXTERNAL (внешнее), прежде чем использовать analogRead(). Это предотвратит вас от короткого замыкания активного внутреннего опорного напряжения и вывода AREF, которое может повредить микроконтроллер на плате. При необходимости вы можете вернуться к рабочему напряжению платы для AREF (то есть — вернуться в нормальное состояние) с помощью следующей команды:

Как нам продемонстрировать внешний AREF в работе? Используя AREF 3,3 В, следующий скетч измеряет напряжение от A0 и отображает процентная доля всего AREF и рассчитанного напряжения:

Результаты скетча показаны на видео выше.

Внутренний AREF

Микроконтроллеры на наших платах Arduino также могут генерировать внутреннее опорное напряжение 1.1В, и мы можем использовать это для работы AREF. Просто используйте строку:

Для плат Arduino Mega в void setup() используйте:

Для Arduino Mega есть также опорное напряжение 2.56В, которое активируется так:

Наконец, прежде чем останавливаться на результатах, полученных на вашем выводе AREF, всегда откалибруйте показания по известному исправному мультиметру. Функция AREF дает вам больше гибкости при измерении аналоговых сигналов.

Источник

Питание платы


Данный раздел имеет довольно таки большую значимость, если делать что то не так, как написано здесь, можно получить сгоревшую плату или глюки, причины которых не так очевидны и отследить их очень трудно. Если вы ожидали увидеть здесь советы по энергосбережению и режимам сна – они находятся в отдельном уроке про энергосбережение.
Перейдем к питанию платы: есть три способа питать Ардуино и вообще Ардуино-проект в целом, у каждого есть свои плюсы/минусы и особенности:

  • Бортовой USB порт
  • “Сырой” вход на микроконтроллер 5V
  • Стабилизированный вход Vin

Что касается земли (пины GND) то они все связаны между собой и просто продублированы на плате, это нужно запомнить. Пины 3.3V, 5V и GND являются источником питания для датчиков и модулей, но давайте рассмотрим особенности.

Питание от USB

Питание от USB – самый плохой способ питания ардуино-проекта. Почему? По линии питания +5V от USB стоит диод, выполняющий защитную функцию: он защищает порт USB компьютера от высокого потребления тока компонентами ардуино-проекта или от короткого замыкания (КЗ), которое может произойти по случайности/криворукости любителей ковырять макетные платы. КЗ продолжительностью менее секунды не успеет сильно навредить диоду и всё может обойтись, но продолжительное замыкание превращает диод в плавкий предохранитель, выпускающий облако синего дыма и спасающий порт компьютера от такой же участи.

К слову, ардуинки от производителя Robotdyn имеют самовосстанавливающийся предохранитель вместо такого костыля с диодом-смертником.

Слаботочный диод имеет ещё одну неприятную особенность: на нём падает напряжение, причем чем больше ток потребления схемы, тем сильнее падает напряжение питания. Пример: голая ардуина без всего потребляет около 20 мА, и от 5 Вольт на юсб после диода нам остаётся примерно 4.7 Вольт. Чем это плохо: опорное напряжение при использовании АЦП крайне нестабильно, не знаешь, что измеряешь (да, есть способ измерения опорного напряжения, но делать это нужно вручную). Некоторые железки чувствительны к напряжению питания, например LCD дисплеи: при питании от 5V они яркие и чёткие, при 4.7 вольтах (питание от юсб) они уже заметно теряют яркость. Если подвигать сервоприводом или включить реле – на диоде упадет ещё больше и дисплей практически погаснет. При коротких мощных нагрузках (выше 500-600ма) микроконтроллер перезапустится, так как напряжение упадет ниже плинтуса.

Вы наверное предложите заменить диод перемычкой, чтобы питать схему от USB большим током, например от powerbank’а. Так делать тоже нельзя, потому что дорожки на плате не рассчитаны на большие токи (дорожка 5V очень тонкая и идёт через всю плату). Я думаю, что можно будет снять 1-2 Ампера с пина 5V, но, скорее всего, напряжение просядет. Также при КЗ вы скорее всего попрощаетесь с дорожкой вообще. Питайте силовую часть схемы либо отдельно, либо от того же источника питайте Arduino.

Питание в Vin

Питание в пин VinGND) – более универсальный способ питания ардуино-проекта, этот пин заводит питание на бортовой стабилизатор напряжения ардуино, на китайских платах обычно стоит AMS1117-5.0. Это линейный стабилизатор, что имеет свои плюсы и минусы. Он позволяет питать ардуино и ардуино-проект от напряжения 7-12 Вольт (это рекомендуемый диапазон, так то питать можно от 5 до 20 Вольт). Стабилизатор устроен так, что он выдает хорошее ровное напряжение с минимальными пульсациями, но всё лишнее напряжение превращает в тепло. Если питать плату и один миниатюрный сервопривод от 12 Вольт, то при активной работе привода стабилизатор нагреется до 70 градусов, что уже ощутимо горячо. По некоторым расчетам из даташита можем запомнить некоторые цифры:

  • При напряжении 7 Вольт (таких блоков питания я не встречал) в Vin можно снять с пина 5V до 2A, больше – перегрев. Отлично сработают два литиевых аккумулятора
  • При 12 Вольтах на Vin можно снять с пина 5V не более 500мА без риска перегрева стабилизатора.
Читайте также:  Стабилизатор напряжения 160 300 в

Питание в пин Vin возможно только в том случае, если в Ардуино проекте (имеется в виду плата Ардуино и железки, подключенные к 5V и GND) не используются мощные потребители тока, такие как сервоприводы, адресные светодиодные ленты, моторчики и прочее. Что можно: датчики, сенсоры, дисплеи, модули реле (не более 3 одновременно в активном состоянии), одиночные светодиоды, органы управления. Для проектов с мощной 5 Вольтовой нагрузкой для нас есть только третий способ.

Питание в 5V

Питание в пин 5VGND) – самый лучший вариант питать плату и ардуино-проект в целом, но нужно быть аккуратным: пин идёт напрямую на микроконтроллер, и на него действуют некоторые ограничения:

  • Максимальное напряжение питания согласно даташиту на микроконтроллер – 5.5V. Всё что выше – с большой вероятностью выведет МК из строя;
  • Минимальное напряжение зависит от частоты, на которой работает МК. Вот строчка из даташита: 0 – 4 MHz @ 1.8 – 5.5V, 0 – 10 MHz @ 2.7 – 5.5V, 0 – 20 MHz @ 4.5 – 5.5V. Что это значит: большинство Arduino-плат имеют источник тактирования на 16 MHz, то есть Arduino будет стабильно работать от напряжения

4 Вольта (20 МГц – 4.5V, 16 МГц – около 4V). Есть версии Arduino на 8 МГц, они будут спокойно работать от напряжения 2.5V.

Важно: напряжение питания в пин 5V не должно превышать 5.5V. Минимальное напряжение: 4V для плат на 16 МГц (на моей практике работало стабильно от 3.5V), 2.5V для плат на 8 МГц.

Самый популярный вариант – USB зардяник от смартфона, их легко достать, диапазон токов от 500ма до 3А – справится практически с любым проектом. Отрезаем штекер и паяем провода на 5V и GND, предварительно определив, где плюс/минус при помощи мультиметра или по цвету: красный всегда плюс, чёрный – земля, при красном плюсе земля может быть белого цвета. При чёрной земле плюс может быть белым, вот так вот. Точно туда же паяем все датчики/модули/потребители 5 Вольт. Да, не очень удобно это паять, но при известной схеме можно аккуратно собрать всё питание в отдельные скрутки и припаять уже их. Пример на фото ниже. Источником питания там является отдельное гнездо micro-usb, зелёная плата сразу над дисплеем.

Автоматический выбор источника

На платах Arduino (на китайских клонах в том числе) реализовано автоматическое переключение активного источника питания: при подключении внешнего питания на пин Vin линия питания USB блокируется. Если кому интересно, на схеме платы Arduino это выглядит вот так:

Питание “мощных” схем

Резюмируя и повторяя всё сказанное выше, рассмотрим варианты питания проектов с большим потреблением тока.
Питать мощный проект (светодиоды, двигатели, нагреватели) от 5V можно так: Arduino и потребитель питаются вместе от 5V источника питания:

Питать мощный потребитель от USB через плату нельзя, там стоит диод, да и дорожки питания тонкие:

Что делать, если всё-таки хочется питать проект от USB, например от powerbank’а? Это ведь удобно! Всё очень просто:

Если есть только блок питания на 12V, то у меня плохие новости: встроенный стабилизатор на плате не вытянет больше 500 мА:

Но если мы хотим питать именно 12V нагрузку, то проблем никаких нет: сама плата Arduino потребляет около 20 мА, и спокойно будет работать от бортового стабилизатора:

Автономное питание

Бывает, что нужно обеспечить автономное питание проекта, т.е. вдали от розетки, давайте рассмотрим варианты. Также для этих целей пригодится урок по энергосбережению и режимам сна микроконтроллера.

    Питание в порт USB

      Самый обыкновенный Powerbank, максимальный ток – 500 мА (помним про защитный диод). Напряжение на пине 5V и высокий уровень GPIO в этом случае будет равен

    4.7V (опять же помним про диод). Внимание! У большинства Powerbank’ов питание отключается при нагрузке меньше 200мА, т.е. об энергосбережении можно забыть;

  • Максимальный выходной ток с пина 5V – 500 мА!
  • Питание в пин Vin (или штекер 5.5×2.1 на плате UNO/MEGA)
    • Любой блок питания/зарядник от ноута с напряжением 7-18 Вольт
    • 9V батарейка “Крона” – плохой, но рабочий вариант. Ёмкость кроны очень небольшая;
    • Сборка из трёх литиевых аккумуляторов: напряжение 12.6-9V в процессе разряда. Хороший вариант, также имеется 12V с хорошим запасом по току (3А для обычных, 20А для высокотоковых аккумуляторов) для двигателей или светодиодных лент;
    • “Модельные” аккумуляторы, в основном Li-Po. В целом то же самое, что предыдущий пункт, но запаса по току в разы больше;
    • Энергосбережение – не очень выгодный вариант, т.к. стабилизатор потребляет небольшой, но всё же ток;
    • Максимальный выходной ток с пина 5V при питании в Vin: 2А при 7V на Vin, 500ma при 12V на Vin
  • Питание в пин 5V
    • Для стабильных 5V на выходе – литиевый аккумулятор и повышающий до 5V модуль. У таких модулей обычно запас по току 2А, также модуль потребляет “в холостом режиме” – плохое энергосбережение;
    • Литиевый аккумулятор – напряжение на пине 5V и GPIO будет 4.2-3.5V, некоторые модули будут работать, некоторые – нет. Работа МК от напряжения ниже 4V не гарантируется, у меня работало в целом стабильно до 3.5V, ниже уже может повиснуть. Энергосбережение – отличное;
    • Пальчиковые батарейки (ААА или АА) – хороший вариант, 3 штуки дадут 4.5-3V, что граничит с риском зависнуть. 4 штуки – очень хорошо. Новые батарейки дадут 6V, что является максимальным напряжением для МК AVR и при желании можно так работать;
    • Пальчиковые Ni-Mh аккумуляторы – отличный вариант, смело можно ставить 4 штуки, они обеспечат нужное напряжение на всём цикле разряда (до 4V). Также имеют хороший запас по току, можно даже адресную ленту питать.
    • Платы с кварцем (тактовым генератором) на 8 МГц позволяют питать схему от низкого напряжения (2.5V, как мы обсуждали выше), отлично подойдут те же батарейки/аккумуляторы, также маломощные проекты можно питать от литиевой таблетки (3.2-2.5V в процессе разряда).
    • Максимальный выходной ток с пина 5V ограничен током источника питания
  • Arduino как источник питания

    Важный момент, который вытекает из предыдущих: использование платы Arduino как источник питания для модулей/датчиков. Варианта тут два:

    • Питание датчиков и модулей от 5V
      • При питании платы от USB – максимальный ток 500 мА
      • При питании платы в Vin – максимальный ток 2 А при Vin 7V, 500 мА при Vin 12V
      • При питании платы в 5V – максимальный ток зависит от блока питания
    • Питание датчиков от GPIO (пинов D и A) – максимальный ток с одного пина: 40 мА, но рекомендуется снимать не более 20 мА. Максимальный суммарный ток с пинов (макс. ток через МК) не должен превышать 200 мА. Допускается объединение нескольких ног для питания нагрузки, но состояние выходов должно быть изменено одновременно (желательно через PORTn), иначе есть риск спалить ногу при её закорачивании на другую во время переключения. Либо делать ногу входом (INPUT), вместо подачи на неё низкого (LOW) сигнала. В этом случае опасность спалить ноги отсутствует.

    Помехи и защита от них

    Если в одной цепи питания с Ардуино стоят мощные потребители, такие как сервоприводы, адресные светодиодные ленты, модули реле и прочее, на линии питания могут возникать помехи, приводящие к сильным шумам измерений с АЦП, а более мощные помехи могут дергать прерывания и даже менять состояния пинов, нарушая связь по различным интерфейсам связи и внося ошибки в показания датчиков, выводя чушь на дисплеи, а иногда дело может доходить до перезагрузки контроллера или его зависания. Некоторые модули также могут зависать, перезагружаться и сбоить при плохом питании, например bluetooth модуль спокойно может зависнуть и висеть до полной перезагрузки системы, а радио модули rf24 вообще не будут работать при “шумном” питании.

    Более того, помеха может прийти откуда не ждали – по воздуху, например от электродвигателя, индуктивный выброс ловится проводами и делает с системой всякое. Что же делать? “Большие дяди” в реальных промышленных устройствах делают очень много для защиты от помех, этому посвящены целые книги и диссертации. Мы с вами рассмотрим самое простое, что можно сделать дома на коленке.

    • Питать логическую часть (Ардуино, слаботочные датчики и модули) от отдельного малошумящего блока питания 5V, то есть разделить питание логической и силовой частей, а ещё лучше питаться в пин Vin от блока питания на 7-12V, так как линейный стабилизатор даёт очень хорошее ровное напряжение. Для корректной работы устройств, питающихся отдельно (драйверы моторов, приводы) нужно соединить земли Ардуино и всех внешних устройств;
    • Поставить конденсаторы по питанию платы, максимально близко к пинам 5V и GND: электролит 6.3V 100-470 uF (мкФ, ёмкость зависит от качества питания: при сильных просадках напряжения ставить ёмкость больше, при небольших помехах хватит и 10-47 мкФ) и керамический на 0.1-1 uF. Это сгладит помехи даже от сервоприводов;
    • У “выносных” на проводах элементах системы (кнопки, крутилки, датчики) скручивать провода в косичку, преимущественно с землёй. А ещё лучше использовать экранированные провода, экран естественно будет GND. Таким образом защищаемся от электромагнитных наводок;
    • Соединять все земли одним толстым проводом и по возможности заземлять на центральное заземление;
    • Металлический и заземленный корпус устройства (или просто обернутый фольгой ? ), на который заземлены все компоненты схемы – залог полного отсутствия помех и наводок по воздуху.

    Ещё лучше с фильтрацией помех справится LC фильтр, состоящий из индуктивности и конденсатора. Индуктивность нужно брать с номиналом в районе 100-300 мкГн и с током насыщения больше, чем ток нагрузки после фильтра. Конденсатор – электролит с ёмкостью 100-1000 uF в зависимости опять же от тока потребления нагрузки после фильтра. Подключается вот так, чем ближе к нагрузке – тем лучше:

    Подробнее о расчёте фильтров можно почитать здесь.

    Индуктивные выбросы

    На практике самая подлая помеха обычно приходит при коммутации индуктивной нагрузки при помощи электромагнитного реле: от такой помехи очень сложно защититься, потому что приходит она по земле, то есть вас не спасёт даже раздельное питание проекта. Что делать?

    • Для цепей постоянного тока обязательно ставить мощный диод обратно-параллельно нагрузке, максимально близко к клеммам реле. Диод примет (замкнёт) на себя индуктивный выброс от мотора/катушки;
    • Туда же, на клеммы реле, можно поставить RC цепочку, называемую в этом случае искрогасящей: резистор 39 Ом 0.5 Вт, конденсатор 0.1 мкФ 400V (для цепи 220В);
    • Для сетей переменного тока использовать твердотельное (SSR) реле с детектором нуля (Zero-cross detector), они же называются “бесшумные” реле. Если в цепи переменного тока вместо реле стоит симистор с оптопарой, то оптопару нужно использовать опять же с детектором нуля, такая оптопара, как и SSR zero-cross будут отключать нагрузку в тот момент, когда напряжение в сети переходит через ноль, это максимально уменьшает все выбросы.

    Подробнее об искрогасящих цепях можно почитать вот в этой методичке.

    Главный Глупый Вопрос

    У новичков в электронике, которые не знают закон Ома, очень часто возникают вопросы вида: “а каким током можно питать Ардуино“, “какой ток можно подать на Ардуино“, “не сгорит ли моя Ардуина от от блока питания 12V 10A“, “сколько Ампер можно подавать на Arduino” и прочую чушь. Запомните: вы не можете подать Амперы, вы можете подать только Вольты, а устройство возьмёт столько Ампер, сколько ему нужно. В случае с Arduino – голая плата возьмёт 20-22 мА, хоть от пина 5V, хоть от Vin. Ток, который указан на блоке питания, это максимальный ток, который БП может отдать без повреждения/перегрева/просадки напряжения. Беспокоиться стоит не об Arduino, а об остальном железе, которое стоит в схеме и питается от блока питания, а также о самом блоке питания, который может не вывезти вашу нагрузку (мотор, светодиоды, обогреватель). Общий ток потребления компонентов не должен превышать возможностей источника питания, вот в чём дело. А будь блок питания хоть на 200 Ампер – компоненты возьмут ровно столько, сколько им нужно, и у вас останется “запас по току” для подключения других. Если устройство питается напряжением, то запомните про максимальный ток источника питания очень простую мысль: кашу маслом не испортишь.

    Источник

    Adblock
    detector