Меню

Батареи конденсаторов емкость заряд напряжение

Конденсатор

Конденсатор – электронный компонент, предназначенный для накопления электрического заряда. Способность конденсатора накапливать электрический заряд зависит от его главной характеристики – емкости. Емкость конденсатора (С) определяется как соотношение количества электрического заряда (Q) к напряжению (U).

Емкость конденсатора измеряется в фарадах (F) – единицах, названых в честь британского ученого физика Майкла Фарадея. Емкость в один фарад (1F) равняется количеству заряда в один кулон (1C), создающему напряжение на конденсаторе в один вольт (1V). Вспомним, что один кулон (1С) равняется величине заряда, прошедшего через проводник за одну секунду (1sec) при силе тока в один ампер (1A).

Однако кулон, это очень большое количество заряда относительно того, сколько способно хранить большинство конденсаторов. По этой причине, для измерения емкости обычно используют микрофарады (µF или uF), нанофарады (nF) и пикофарады (pF).

  • 1µF = 0.000001 = 10 -6 F
  • 1nF = 0.000000001 = 10 -9 F
  • 1pF = 0.000000000001 = 10 -12 F

Плоский конденсатор

Существует множество типов конденсаторов различной формы и внутреннего устройства. Рассмотрим самый простой и принципиальный — плоский конденсатор. Плоский конденсатор состоит из двух параллельных пластин проводника (обкладок), электрически изолированных друг от друга воздухом, или специальным диэлектрическим материалом (например бумага, стекло или слюда).

Заряд конденсатора. Ток

По своему предназначению конденсатор напоминает батарейку, однако все же он сильно отличается по принципу работы, максимальной емкости, а также скорости зарядки/разрядки.

Рассмотрим принцип работы плоского конденсатора. Если подключить к нему источник питания, на одной пластине проводника начнут собираться отрицательно заряженные частицы в виде электронов, на другой – положительно заряженные частицы в виде ионов. Поскольку между обкладками находиться диэлектрик, заряженные частицы не могут «перескочить» на противоположную сторону конденсатора. Тем не менее, электроны передвигаются от источника питания — до пластины конденсатора. Поэтому в цепи идет электрический ток.

В самом начале включения конденсатора в цепь, на его обкладках больше всего свободного места. Следовательно, начальный ток в этот момент встречает меньше всего сопротивления и является максимальным. По мере заполнения конденсатора заряженными частицами ток постепенно падает, пока не закончится свободное место на обкладках и ток совсем не прекратится.

Время между состояниями «пустого» конденсатора с максимальным значением тока, и «полного» конденсатора с минимальным значением тока (т.е. его отсутствием), называют переходным периодом заряда конденсатора.

Заряд конденсатора. Напряжение

В самом начале переходного периода зарядки, напряжение между обкладками конденсатора равняется нулю. Как только на обкладках начинают появляться заряженные частицы, между разноименными зарядами возникает напряжение. Причиной этому является диэлектрик между пластинами, который «мешает» стремящимся друг к другу зарядам с противоположным знаком перейти на другую сторону конденсатора.

На начальном этапе зарядки, напряжение быстро растет, потому что большой ток очень быстро увеличивает количество заряженных частиц на обкладках. Чем больше заряжается конденсатор, тем меньше ток, и тeм медленнее растет напряжение. В конце переходного периода, напряжение на конденсаторе полностью прекратит рост, и будет равняться напряжению на источнике питания.

Как видно на графике, сила тока конденсатора напрямую зависит от изменения напряжения.

Формула для нахождения тока конденсатора во время переходного периода:

  • Ic — ток конденсатора
  • C — Емкость конденсатора
  • ΔVc/Δt – Изменение напряжения на конденсаторе за отрезок времени

Разряд конденсатора

После того как конденсатор зарядился, отключим источник питания и подключим нагрузку R. Так как конденсатор уже заряжен, он сам превратился в источник питания. Нагрузка R образовала проход между пластинами. Отрицательно заряженные электроны, накопленные на одной пластине, согласно силе притяжения между разноименными зарядами, двинутся в сторону положительно заряженных ионов на другой пластине.

В момент подключения R, напряжение на конденсаторе то же, что и после окончания переходного периода зарядки. Начальный ток по закону Ома будет равняться напряжению на обкладках, разделенном на сопротивление нагрузки.

Как только в цепи пойдет ток, конденсатор начнет разряжаться. По мере потери заряда, напряжение начнет падать. Следовательно, ток тоже упадет. По мере понижения значений напряжения и тока, будет снижаться их скорость падения.

Читайте также:  Sp001p ac220 устройство защиты цепей питания напряжением 220 240в

Время зарядки и разрядки конденсатора зависит от двух параметров – емкости конденсатора C и общего сопротивления в цепи R. Чем больше емкость конденсатора, тем большее количество заряда должно пройти по цепи, и тем больше времени потребует процесс зарядки/разрядки ( ток определяется как количество заряда, прошедшего по проводнику за единицу времени). Чем больше сопротивление R, тем меньше ток. Соответственно, больше времени потребуется на зарядку.

Продукт RC (сопротивление, умноженное на емкость) формирует временную константу τ (тау). За один τ конденсатор заряжается или разряжается на 63%. За пять τ конденсатор заряжается или разряжается полностью.

Для наглядности подставим значения: конденсатор емкостью в 20 микрофарад, сопротивление в 1 килоом и источник питания в 10В. Процесс заряда будет выглядеть следующим образом:

Устройство конденсатора. От чего зависит емкость?

Емкость плоского конденсатора зависит от трех основных факторов:

  • Площадь пластин — A
  • Расстояние между пластинами – d
  • Относительная диэлектрическая проницаемость вещества между пластинами — ɛ

Площадь пластин

Чем больше площадь пластин конденсатора, тем больше заряженых частиц могут на них разместится, и тем больше емкость.

Расстояние между пластинами

Емкость конденсатора обратно пропорциональна расстоянию между пластинами. Для того чтобы объяснить природу влияния этого фактора, необходимо вспомнить механику взаимодействия зарядов в пространстве (электростатику).

Если конденсатор не находится в электрической цепи, то на заряженные частицы, расположенные на его пластинах влияют две силы. Первая — это сила отталкивания между одноименными зарядами соседних частиц на одной пластине. Вторая – это сила притяжения разноименных зарядов между частицами, находящимися на противоположных пластинах. Получается, что чем ближе друг к другу находятся пластины, тем больше суммарная сила притяжения зарядов с противоположным знаком, и тем больше заряда может разместится на одной пластине.

Относительная диэлектрическая проницаемость

Не менее значимым фактором, влияющим на емкость конденсатора, является такое свойство материала между обкладками как относительная диэлектрическая проницаемость ɛ. Это безразмерная физическая величина, которая показывает во сколько раз сила взаимодействия двух свободных зарядов в диэлектрике меньше, чем в вакууме.

Материалы с более высокой диэлектрической проницаемостью позволяют обеспечить большую емкость. Объясняется это эффектом поляризации – смещением электронов атомов диэлектрика в сторону положительно заряженной пластины конденсатора.

Поляризация создает внутренне электрическое поле диэлектрика, которое ослабляет общую разность потенциала (напряжения) конденсатора. Напряжение U препятствует притоку заряда Q на конденсатор. Следовательно, понижение напряжения способствует размещению на конденсаторе большего количества электрического заряда.

Ниже приведены примеры значений диэлектрической проницаемости для некоторых изоляционных материалов, используемых в конденсаторах.

  • Воздух – 1.0005
  • Бумага – от 2.5 до 3.5
  • Стекло – от 3 до 10
  • Слюда – от 5 до 7
  • Порошки оксидов металлов – от 6 до 20

Номинальное напряжение

Второй по значимости характеристикой после емкости является максимальное номинальное напряжение конденсатора. Данный параметр обозначает максимальное напряжение, которое может выдержать конденсатор. Превышение этого значения приводит к «пробиванию» изолятора между пластинами и короткому замыканию. Номинальное напряжение зависит от материала изолятора и его толщины (расстояния между обкладками).

Следует отметить, что при работе с переменным напряжением нужно учитывать именно пиковое значение (наибольшее мгновенное значение напряжения за период). Например, если эффективное напряжение источника питания будет 50В, то его пиковое значение будет свыше 70В. Соответственно необходимо использовать конденсатор с номинальным напряжением более 70В. Однако на практике, рекомендуется использовать конденсатор с номинальным напряжением не менее в два раза превышающим максимально возможное напряжение, которое будет к нему приложено.

Ток утечки

Также при работе конденсатора учитывается такой параметр как ток утечки. Поскольку в реальной жизни диэлектрик между пластинами все же пропускает маленький ток, это приводит к потере со временем начального заряда конденсатора.

Источник

Конденсатор

Конденсатор имеет следующее схематическое изображение

Рассмотрим водопроводную модель конденсатора. Ранее мы говорили о том, что ток может течь только в трубе, соединенной в кольцо в замкнутой цепи. Но можно представить пустую емкость, в которую можно заливать воду, пока емкость не заполнится. Это и есть конденсатор — емкость, в которую можно заливать заряд.

Читайте также:  При напряжении спины боль в лопатках

Для большей аналогии лучше представить себе водонапорную башню, в модели — трубу бесконечной длины поставленную вертикально. Вода насосом закачивается в эту трубу с нижнего торца и поднимается на высоту. Чем больше воды закачали и чем выше она поднялась — тем сильнее столб воды давит на днище и выше там давление. Так-то в эту бесконечную трубу можно сколько угодно воды (электрического заряда) закачать, но при этом противодавление столба воды будет расти. Если качать заряд генератором напряжения, то когда противодавление сравняется с давлением (напряжением), создаваемым генератором — закачка остановится.

Если характеристикой резистора является сопротивление, то электрической характеристикой конденсатора является емкость.

Емкость говорит, сколько заряда можно в конденсатор закачать, чтобы напряжение там поднялось до величины U. Можно сказать, что емкость характеризует диаметр трубы. Чем ýже труба, тем быстрее поднимается уровень воды при закачке и растет давление на дне трубы. Давление же зависит только от высоты водяного столба, а не от массы закачанной воды.

В электрических терминах, чем меньше емкость конденсатора, тем быстрее растет напряжение при закачке туда заряда.

Напомню, что электрический ток I равен количеству протекающего заряда Q в секунду. То есть I=Q/T, где T — время. Это все равно, что поток воды исчисляемый кубометрами в секунду. Или килограммами в сек, потом проверим по размерности).

Поэтому конденсатор с маленькой емкостью заполняется зарядом быстро, а с большой емкостью — медленно.

Рассмотрим теперь электрические цепи с конденсатором.

Пусть конденсатор подключен к генератору напряжения.

рис 9. Подключение конденсатора к генератору напряжения.

«Главный инженер повернул рубильник» S1 и.. тыдыщ. Что произошло?

Идеальный генератор напряжения имеет бесконечную мощность и может выдавать бесконечный ток. Когда замкнули рубильник в нашу емкость хлынуло бесконечное количество заряда в секунду и она мгновенно заполнилась и напряжение на ней выросло до U.

Теперь рассмотрим более реальную цепь.

Это Вторая Главная Цепь в жизни инженера-электронщика (после делителя напряжения) —
RC–цепочка.

RC–цепочка

RC -цепочки бывают интегрирующего и дифференцирующего типа.

RC–цепочка интегрирующего типа

Что произойдет в этой схеме, если замкнуть выключатель S1?

Конденсатор С исходно разряжен и напряжение на нем рано 0. Поэтому ток в первый момент будет равен I=U/R. Затем конденсатор начнет заряжаться, напряжение на нем увеличивается, и ток через резистор начнет уменьшаться. I=(U-Uc)/R. Этот процесс будет продолжаться, конденсатор будет заряжаться уменьшающимся током до напряжения источника U. Напряжение на конденсаторе при этом будет расти по экспоненте.

рис 11. График роста напряжения на конденсаторе при подаче напряжения величиной U (ступеньки).

Вопрос: А если запитать такую цепочку от генератора тока, как будет расти напряжение на конденсаторе?

Почему цепочка называется — «интегрирующего типа»?

Как выше было отмечено, ток в первый момент после подачи напряжение будет равен I=U/R, так как конденсатор разряжен, и напряжение на нем равно 0. И какое-то время, пока напряжение на конденсаторе Uc мало по сравнению с U, ток будет оставаться почти постоянным. А при заряде конденсатора постоянным током напряжение на нем растет линейно.

Uc=Q/C, а мы помним, что ток это количество заряда в секунду, то есть скорость протекания заряда. Другими словами, заряд это интеграл от тока.

Q = ∫ I * dt =∫ U/R * dt

Uc=1/RC * ∫ U * dt

Но все это близко к истине в начальный момент, пока напряжение на конденсаторе малó.

На самом деле все сводится к тому, что конденсатор заряжается постоянным током.
А постоянный ток выдает генератор тока. (См. вопрос выше)
Если источник напряжения выдает бесконечно большое напряжение и сопротивление R также имеет бесконечно большую величину, то по факту мы имеем уже идеальный генератор тока, и внешние цепи на величину этого тока влияния не оказывают.

Читайте также:  Деление напряжения при параллельном соединении

RC–цепочка дифференцирующего типа

Ну тут все то же самое, что в интегрирующей цепочке, только наоборот.

рис 12. Дифференцирующая цепочка.

Более подробно свойства RC цепей хорошо освещены в интернете.

Параллельное и последовательное соединение конденсаторов

Так же как резисторы, конденсаторы можно соединять последовательно и параллельно.

При параллельном соединении емкости складываются — ну это и понятно, это как заполнять сообщающиеся сосуды, общий объем получается равным сумме объемов. При последовательном же соединении получится так, что конденсатор с маленькой емкостью заполнится зарядом быстрее, чем конденсатор с большой емкостью. Напряжение на маленьком конденсаторе быстро вырастет почти до напряжения источника ( ну и остальные конденсаторы внесут свой вклад) , ток в общей цепи уменьшится до нуля, и процесс заряда конденсаторов прекратится. Таким образом емкость последовательно соединенных конденсаторов получается меньше емкости самого маленького из них.

Upd.
Рассмотрим более подробно процесс заряда конденсатора на схеме рис.10 (по мотивам учебника И.В.Савельева «Курс общей физики», том II. «Электричество» )
Как было сказано в предыдущей статье О природе электрического тока электрический ток — это движение заряженных частиц. В проводниках ( в отличие от диэлектриков-изоляторов) часть электронов является свободными и такие электроны могут перескакивать от одного атому к другому. В целом проводник электрически нейтрален — отрицательный заряд электронов компенсируется положительным зарядом ядер атомов. Чтобы заставить электроны двигаться нужно создать их избыток на одном конце проводника и недостаток на другом. Этот избыток электронов на одном полюсе создает батарейка вследствие протекающих в ней электрохимических реакций. Когда проводник присоединяется к полюсам батарейки электроны от полюса, где их избыток начинают двигаться к другому полюсу, потому что одноименные заряды отталкивают друг друга. Эти свободные электроны движутся внутри проводника по всему объему.
Движение электронов в RC цепи на рис. 3 имеет другой характер. Поскольку цепь не замкнута (обкладки конденсатора не соединены друг с другом) постоянный ток в цепи идти не может. Поэтому поступающий избыток электронов с полюса батарейки приводит к тому, что проводник теряет электрическую нейтральность. Избыточный заряд q, распределяется по поверхности проводника так, чтобы напряженность поля внутри проводника была равна нулю. Ну это понятно, одноименные заряды отталкиваются и стремятся расположиться подальше друг от друга, то есть на поверхности. Если бы не было резистора R, то перераспределение зарядов по поверхности происходило бы мгновенно. Однако резистор ограничивает ток ( движение зарядов) поэтому перераспределение происходит постепенно. По мере зарядки конденсатора напряжение на нем растет и ток через резистор уменьшается. Избыточные электроны концентрируются на одной обкладке и создают электрическое поле. Это поле отталкивает электроны, находящиеся на другой обкладке и «проталкивает» их дальше по проводнику к отрицательному полюсу батареи. (Знаки + и в данном случае берем условно). Таким образом в незамкнутой цепи протекает ток заряда конденсатора. Этот ток не постоянный и уменьшается со временем. Однако, если в какой-то момент поменять полярность батареи, то ток потечет уже в обратную сторону. Если это переключение делать достаточно часто, так чтобы конденсатор не успевал полностью зарядиться, то в цепи все время будет течь ток, то в одну, то в другую сторону. Это и происходит, когда говорят, что «конденсатор проводит переменный ток».
Для плоского конденсатора емкость равна С=ε0*ε*S/d , где d – зазор между обкладками, ε – диэлектрическая проницаемость вещества, заполняющего зазор, S — площадь обкладок.
То есть на емкость влияет не только площадь обкладок и расстояние между ними, но и материал диэлектрика, который между обкладками помещен. Причем на емкость конденсатора материал диэлектрика может влиять достаточно сильно, с разными дополнительными эффектами, см. например статью «Поляризация диэлектрика»

Литература
«Драма идей в познании природы», Зельдович Я.Б., Хлопов М.Ю., 1988
«Курс общей физики», том II. «Электричество» И.В.Савельев
Википедия — статьи про электричество.

Источник

Adblock
detector