Меню

Биполярный транзистор в стабилизаторе напряжения

Биполярный транзистор в стабилизаторе напряжения

Блок питания «Проще не бывает». Часть вторая

Автор:
Опубликовано 01.01.1970

Ага, все-таки зашел? Что, любопытство замучило? Но я очень рад. Нет, правда. Располагайся поудобнее, сейчас мы вместе произведем некоторые нехитрые расчеты, которые нужны, чтобы сварганить тот блок питания, который мы уже сделали в первой части статьи. Хотя надо сказать, что эти расчеты могут пригодиться и в более сложных схемах.

Итак, наш блок питания состоит из двух основных узлов — это выпрямитель, состоящий из трансформатора, выпрямительных диодов и конденсатора и стабилизатор, состоящий из всего остального. Как настоящие индейцы, начнем, пожалуй, с конца и рассчитаем сначала стабилизатор.

Схема стабилизатора показана на рисунке.

Это, так называемый параметрический стабилизатор. Состоит он из двух частей:
1 — сам стабилизатор на стабилитроне D с балластным резистором R б
2 — эмиттерный повторитель на транзисторе VT.

Непосредственно за тем, чтобы напряжение оставалось тем каким нам надо, следит стабилизатор, а эмиттерный повторитель позволяет подключать мощную нагрузку к стабилизатору. Он играет роль как бы усилителя или если угодно — умощителя.

Два основных параметра нашего блока питания — напряжение на выходе и максимальный ток нагрузки. Назовем их:
Uвых — это напряжение
и
Imax — это ток.

Для блока питания, который мы отгрохали в прошлой части, Uвых = 14 Вольт, а Imax = 1 Ампер.

Сначала нам необходимо определить какое напряжение Uвх мы должны подать на стабилизатор, чтобы на выходе получить необходимое Uвых.
Это напряжение определяется по формуле:

Откуда взялась цифра 3? Это падение напряжения на переходе коллектор-эмиттер транзистора VT. Таким образом, для работы нашего стабилизатора на его вход мы должны подать не менее 17 вольт.

Определим, какой нам нужен транзистор VT. Для этого нам надо определить, какую мощность он будет рассеивать.

Тут надо учесть один момент. Для расчета мы взяли максимальное выходное напряжение блока питания. Однако, в данном расчете, надо наоборот брать минимальное напряжение, которое выдает БП. А оно, в нашем случае, составляет 1,5 вольта. Если этого не сделать, то транзистор может накрыться медным тазом, поскольку максимальная мощность будет рассчитана неверно.
Смотри сам:

Если мы берем Uвых=14 вольтам, то получаем P max =1.3*(17-14)*1=3.9 Вт.
А если мы примем Uвых=1.5 вольта, то P max =1.3*(17-1.5)*1=20,15 Вт

То есть, если бы не учли этого, то получилось бы, что расчетная мощность в ПЯТЬ раз меньше реальной. Разумеется, транзистору это сильно не понравилось бы.

Ну вот, теперь лезем в справочник и выбираем себе транзистор.
Помимо только что полученной мощности, надо учесть, что предельное напряжение между эмиттером и коллектором должно быть больше Uвх, а максимальный ток коллектора должен быть больше Imax. Я выбрал КТ817 — вполне приличный транзистор.

Фу, ну вроде с этим справились. Пошли дальше.

Сначала определим максимальный ток базы свежевыбранного транзистора ( а ты как думал? в нашем жестоком мире потребляют все — даже базы транзисторов).

h21 Э min — это минимальный коэффициент передачи тока транзистора и берется он из справочника Если там указаны пределы этого параметра — что то типа 30…40, то берется самый маленький. Ну, у меня в справочнике написано только одно число — 25, с ним и будем считать, а что еще остается?

I б max =1/25=0.04 А (или 40 мА). Не мало.

Ну давайте будем теперь искать стабилитрон.
Искать его надо по двум параметрам — напряжению стабилизации и току стабилизации.

Напряжение стабилизации должно быть равно максимальному выходному напряжению блока питания, то есть 14 вольтам, а ток — не менее 40 мА, то есть тому, что мы посчитали.
Полезли опять в справочник.

По напряжению нам страшно подходит стабилитрон Д814Д, к тому же он у меня был под рукой. Но вот ток стабилизации… 5 мА нам никак не годится. Чего делать будем? Будем уменьшать ток базы выходного транзистора. А для этого добавим в схему еще один транзистор. Смотрим на рисунок. Мы добавили в схему транзистор VT2. Сия операция позволяет нам снизить нагрузку на стабилитрон в h21Э раз. h21Э, разумеется, того транзистора, который мы только что добавили в схему. Особо не думая, я взял из кучи железок КТ315. Его минимальный h21Э равен 30, то есть мы можем уменьшить ток до 40/30=1.33 мА, что нам вполне подходит.

Теперь посчитаем сопротивление и мощность балластного резистора R б .

R б =(Uвх-Uст)/(I б max +I ст min )

где Uст — напряжение стабилизации стабилитрона,
Iст min — ток стабилизации стабилитрона.

R б = (17-14)/((1.33+5)/1000) = 470 Ом.

Теперь определим мощность этого резистора

Собственно и все. Таким образом, из исходных данных — выходного напряжения и тока, мы получили все элементы схемы и входное напряжение, которое должно быть подано на стабилизатор.

Однако не расслабляемся — нас еще ждет выпрямитель. Уж считать так считать, я так считаю (каламбур однако).

Итак, смотрим на схему выпрямителя.

Ну, тут все проще и почти на пальцах. Учитывая то, что мы знаем, какое напряжение нам надо подать на стабилизатор — 17 вольт, вычислим напряжение на вторичной обмотке трансформатора. Для этого пойдем, как и в начале — с хвоста. Итак, после конденсатора фильтра мы должны иметь напряжение 17 вольт.

Учитывая то, что конденсатор фильтра увеличивает выпрямленное напряжение в 1,41 раза, получаем, что после выпрямительного моста у нас должно получиться 17/1,41=12 вольт.
Теперь учтем, что на выпрямительном мосту мы теряем порядка 1,5-2 вольт, следовательно, напряжение на вторичной обмотке должно быть 12+2=14 вольт. Вполне может случится так, что такого трансформатора не найдется, не страшно — в данном случае можно применить трансформатор с напряжением на вторичной обмотке от 13 до 16 вольт.

Едем дальше. Определим емкость конденсатора фильтра.

где Iн — максимальный ток нагрузки,
Uн — напряжение на нагрузке,
Kн — коэффициент пульсаций.

В нашем случае
Iн = 1 Ампер,
Uн=17 вольтам,
Kн=0,01.

Однако, поскольку за выпрямителем идет еще стабилизатор напряжения, мы можем уменьшить расчетную емкость в 5…10 раз. То есть 2000 мкФ будет вполне достаточно.

Осталось выбрать выпрямительные диоды или диодный мост.

Для этого нам надо знать два основных параметра — максимальный ток, текущий через один диод и максимальное обратное напряжение, так же через один диод.

Необходимое максимальное обратное напряжение считается так

U обр max =2U н , то есть U обр max =2*17=34 Вольта.

А максимальный ток, для одного диода должен быть больше или равен току нагрузки блока питания. Ну а для диодных сборок в справочниках указывают общий максимальный ток, который может протекать через эту сборку.

Ну вот вроде бы и все про выпрямители и параметрические стабилизаторы.
Впереди у нас стабилизатор для самых ленивых — на интегральной микросхеме и стабилизатор для самых трудолюбивых — компенсационный стабилизатор.

Источник

Стабилизатор напряжения на транзисторах

Стабилизатор на одном стабилитроне

Для сглаживания пульсаций напряжения и постоянства тока на выходе блока питания применяют стабилизаторы. Как правило в основе стабилизатора лежит стабилитрон. Стабилитрон – полупроводниковый прибор обладающий свойством стабилизации напряжения. В отличии от обычного диода работает в обратной полярности (на катод подается плюс), в режиме лавинного пробоя. Благодаря этому свойству стабилитрона напряжение на нем, а следовательно, и на нагрузке практический не меняется. На рисунке ниже представлена схема простейшего стабилизатора.

Такой стабилизатор подойдет для питания маломощных устройств.

Принцип работы стабилизатора на стабилитроне

Конденсатор нужен для сглаживания пульсаций по напряжению, называется он фильтрующим. Резистор нужен для сглаживания пульсаций по току и называется он гасящим. Стабилитрон стабилизирует напряжение на нагрузке. Для нормальной работы данной схемы напряжение питания должно быть больше 40…50 %. Стабилитрон следует подобрать под нужное нам напряжение и ток.

Стабилизатор на одном транзисторе

Для питания нагрузки большей мощности в схему добавляют транзистор. Пример схемы показан ниже.

Принцип работы стабилизатора на одном транзисторе

Цепочка из R1 и VT1 нам уже знакома из предыдущей схемы, это простейший стабилизатор, он задает стабилизированное напряжение на базе транзистора VT2. Транзистор в свою очередь выполняет функцию усилителя тока и является управляющим элементом в этой схеме. Например, при повышении входного напряжения, выходное напряжение будет стремится к возрастанию. Это приводит к понижению напряжения на эмиттерном переходе транзистора VT2, что приводит к его закрытию. При этом падение напряжения на участке эмиттер – коллектор возрастает на столько, что напряжение на стабилитроне уменьшается до исходного уровня. При понижении напряжения стабилизатор реагирует в обратном порядке.

Стабилизатор на транзисторах с защитой от КЗ

В практике радиолюбителя бывают ошибки и происходит короткое замыкание. Для уменьшения последствий в результате КЗ рассмотрим схему стабилизатора на два фиксированных напряжения и с защитой от короткого замыкания.

Как видим в данную схему добавлен транзистор V4, диоды V6 и V7, и параметрический стабилизатор состоящий из резистора R1, диодов V2, V3 оснащен переключателем S2.

Принцип работы защиты стабилизатора

Данная схема рассчитана на ток срабатывания от КЗ 250…300 мА, пока он не превышен, ток будет проходить через делитель напряжения состоящий из диода V7 и резистора R3. Путем подбора данного резистора можно регулировать порог срабатывания защиты. Диод V6 при этом будет закрыт и никакого влияния на работы оказывать не будет. При срабатывании защиты диод V7 закроется, а диод V6 откроется и зашунтирует подключений стабилитрон, при этом транзисторы V4 и V5 закроются. Ток на нагрузке упадет до 20…30 мА. Транзистор V5 следует устанавливать на теплоотвод.

Стабилизатор с регулируемым выходным напряжением

В ремонте или наладке электронных устройств необходимо иметь блок питания с регулируемым выходным напряжением. Принципиальная схема стабилизаторы с регулировкой по напряжению представлена ниже.

Принцип работы стабилизатора с регулировкой напряжения

Параметрический стабилизатор состоящий из R2 и V2 стабилизируют напряжение на переменном резисторе R3. Напряжение с этого резистора поступает на управляющий транзистор. Этот транзистор включен по схеме эмиттерного повторителя, нагрузкой которого является резистор R4. Напряжение с резистора R4 подается на регулирующий транзистор V4, нагрузкой которого уже выступает наше питаемое устройство. Регулировка напряжения осуществляется переменным резистором R3, если движок резистора находится в минимальном положении по схеме, то напряжения для открытия транзисторов V3 и V4 недостаточно и на выходе будет минимальное напряжение. При вращении движка, транзисторы начинают открываться, что увеличивает напряжение на нагрузке. При увеличении тока нагрузки, падение напряжения на резисторе R1 и лампа Н1 начинает загораться, при токе в 250 мА наблюдается тусклое свечение, а при токе в 500мА и выше яркое. Транзистор V4 следует устанавливать на теплоотвод. При повышенной нагрузке более 500 мА, следует как можно быстрее выключить блок питания, так как при длительной максимальной нагрузке выходят из строя диоды в выпрямительном мостике и транзистор V4.

Данные схемы при правильной сборке не нуждаются в наладке. Также их можно модернизировать на более большой ток и напряжения. Путем подбора радиоэлементов с нужными нам параметрами.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Источник

Читайте также:  Протокол проверки при новом включении электромагнитных реле тока напряжения
Adblock
detector