Меню

Датчик напряжения в генераторе

Лекция № 8-5 Генераторные датчики

Генераторные датчики – это такие преобразователи, которые при изменении конролируемого или регулируемого измеряемого сигнала генерируют на выходе напряжение или ток.

Генераторными являются термоэлектрические, пьезоэлектрические, индукционные, фотоэлектрические и многие другие типы датчиков.

Типы этих датчиков называются так же, как и явления, на которых они основаны:

  • Пьезоэлектрические — пьезоэлектрический эффект.
  • Термоэлектрические — термоэлектрический эффект.
  • Индукционные — электромагнитная индукция.
  • Фотоэлектрические – фотоэффект.
  • Гальванические — химический источник электрического тока, основанный на взаимодействии двух металлов и/или их оксидов в электролите, приводящем к возникновению в замкнутой цепи электрического тока.

Генераторные датчики осуществляют непосредственное преобразование входной величины X в электрический сигнал. Такие датчики преобразуют энергию источника входной (измеряемой) величины сразу в электрический сигнал, т.е. они являются как бы генераторами электроэнергии (откуда и название таких датчиков — они генерируют электрический сигнал). Дополнительные источники электроэнергии для работы таких датчиков принципиально не требуются (тем не менее дополнительная электроэнергия может потребоваться для усиления выходного сигнала датчика, его преобразования в другие виды сигналов и других целей).

Пьезоэлектрические датчики

В этих датчиках используется пьезоэлектрический эффект , который заключается в том, что некоторые материалы под действием на них силы электризуются: на их поверхности появляется электрический заряд, величина которого зависит от приложенной силы.

Это означает, что материал, обладающий пьезоэффектом, выполняет преобразование силы в электрический заряд.

Природным материалом, который обладает пьезоэффектом, является кварц или горный хрусталь..

Заряд, возникающий вследствие пьезоэффекта, линейно зависит от приложенной силы:

,

где — коэффициент пьезочувствительности материала.

Пьезоэффект может быть продольным, когда заряд возникает на поверхностях, к которым приложена сила, или поперечным, когда заряд возникает на боковых поверхностях. Материал при этом практически не деформируется.

На рис. 67 представлены схемы, иллюстрирующие продольный (рис. 67 а) и поперечный (рис. 67 б, в) пьезоэффекты, и обозначены знаки возникающих зарядов. Для эффективного использования поперечного пьезоэффекта две пластины пьезоматериалов соединяют параллельно (рис. 67 б), прокладывают между ними проводящую прокладку и закрепляют их, как консольную балку. Образующийся заряд возникает на зажимах, как показано на рисунке. При действии силы F верхняя пластина растягивается, а нижняя сжимается, и заряд возникает на боковых относительно действующих напряжений сторонах пластин. В такой конструкции чувствительность преобразования F ® q существенно выше. К достоинствам кристалла кварца применительно к созданию датчиков силы и других величин относится его стойкость к высокой температуре (пьезоэффект утрачивается после точки Кюри при t° = 530°C) и высокая точность и стабильность преобразования.


Рис.2- Принципиальные схемы пьезоэлектрических преобразователей

На рис.2 показаны различные принципиальные схемы пьезоэлектрических преобразователей, использующихся в схемах измерений механических параметров.

На рис.2,а изображен преобразователь, в котором используется прямой пьезоэлектрический эффект. Такие преобразователи применяются в приборах для измерения силы, давления и ускорения. На рис.2,б изображен преобразователь, в котором используется обратный пьезоэлектрический эффект.

Датчик ускорения.На рис.3 представлено схематическое устройство датчика на основе двухслойной пьезокерамики (биморфный упругий элемент). Инерционная масса датчика под действием ускорения вызывает изгибную деформацию, обеспечивающую достаточный по уровню для обработки динамический сигнал.

На рис.3,а показано состояние датчика в режиме покоя или равномерного движения. На рис.3,б пластина изгибается, на ее гранях появляется разноименный заряд, определяющий величину разности потенциалов. Такие датчики используются в пусковых устройствах подушек безопасности автомобилей, натяжителях ремней безопасности, устройствах, препятствующих опрокидыванию автомобилей. Предельная частота измерений таким датчиком около 10 Гц.

Читайте также:  Столкновение момент наивысшего напряжения в произведении что это

Датчик детонации (рис.4).В качестве таковых также используются датчики ускорения, в основе которых лежит продольный пьезоэффект. Датчик детонации прикрепляется к блоку цилиндров с помощью посадочной втулки в таком месте, чтобы обеспечить оптимальное определение детонации во всех цилиндрах двигателя. Место установки датчика определяется экспериментально на этапе конструкторской разработки двигателя.

Колебания блока цилиндров двигателя при детонации передаются к кольцевому пьезокерамическому элементу, расположенному между двумя металлическими контактами. Инерционная масса в датчике служит для усиления эффекта восприятия вибрационных колебаний. Сигнал с датчика сначала фильтруется и преобразуется в электронном блоке, а затем амплитуда огибающей функции сравнивается с допустимым уровнем для сигнала детонации. При превышении заданного уровня детонации автоматический регулятор зажигания корректирует угол опережения зажигания в нужную сторону. Для увеличения прочности датчика его заливают компаундом.

Датчики на основе пьезоэлементов простой геометрической формы (прямоугольная пластинка или круглый диск) могут работать в диапазоне частот до десятков килогерц, измерять ускорения от десятых долей до сотен значений ускорений свободного падения.

Термоэлектрические датчики

Их работа основана на термоэфекте — появлении термоэлектродвижущей силы (термо-ЭДС).

Сущность этого явления заключается в следующем.

Если соста­вить электрическую цепь из двух разнородных металлических про­водников (или полупроводников), причем с одного конца проводни­ки спаять, а место соединения (спай) нагреть, то в такой цепи воз­никает ЭДС. Эта ЭДС будет пропорциональна температуре места спая (точнее — разности температур места спая и свободных, не­спаянных концов).

Коэффициент пропорциональности зависит от материала проводников и в определенном интервале температуры остается постоянным.

Цепь, составленная из двух разнородных ма­териалов, называется термопарой ; проводники, составляющие термопару, называются термоэлектродами; места соединения тер­моэлектродов —спаями.

Спай, помещаемый в среду, температуру которой надо измерить, называется горячим или рабочим. Спай, от носительно которого измеряется температура, называется холодным или свободным. Возникающая при различии температур горячего и холодного спаев ЭДС называется термоЭДС. По значению этой термоЭДС можно определить температуру. Физическая сущность возникновения термоЭДС объясняется наличием свободных электронов в металлах. Эти свободные элек­троны хаотически движутся между положительными ионами, обра­зующими остов кристаллической решетки. В разных металлах свободные электроны облада­ют при одной и той же темпе­ратуре разными скоростью и энергией. При соединении двух разнородных металлов (элект­родов) свободные металлы из одного электрода проникают в другой. При этом металл с большей энергией и скоростью свободных электронов больше их теряет. Следовательно, он приобретает положительный потенциал. Металл с меньшей энергией свободных электронов приобретает отрицательный потенциал. Возникает контактная разность потенциалов. При одинаковой температуре спаев (01= 02 на рис. 10.1, а) контактная разность потенциалов не может создать тока в замкнутой цепи. Контактная разность в спае / направлена навстречу контактной разности в спае 2. Но если на­греть один из спаев (рабочий) до температуры 01>02, то контакт­ная разность в спае 1 увеличится, а в спае 2 останется без изме­нения. В результате в контуре и возникает термоЭДС, тем боль­шая чем больше разность температур спаев 1 и 2 (0,—82). Для измерения термоЭДС, вырабатываемой термопарой, в цепь термопары включают измерительный прибор (например, милли­вольтметр).

Индукционные датчики

преобразуют измеряемую неэлектрическую величину в ЭДС индукции. Принцип действия датчи­ков основан на законе электромагнитной индукции.

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Закон электромагнитной индукции (закон Фарадея):

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

Читайте также:  Средство для глаз снимающие напряжение

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

К этим датчикам относятся тахогенераторы постоянного и переменного то­ка, представляющие собой небольшие электромашинные генерато­ры, у которых выходное напряжение пропорционально угловой ско­рости вращения вала генератора. Тахогенераторы используются как датчики угловой скорости.

Тахогенератор представляет собой электрическую машину, работающую в генераторном режиме.

При этом вырабатываемая ЭДС пропорциональна скорости вращения и величине магнитного потока. Кроме того, с изменением скорости вращения изменяется частота ЭДС. Применяются как датчики скорости (частоты вращения).

Источник

Реле-регулятор напряжения генератора: проверка неисправностей современных и устаревших моделей

В случае проблем с аккумулятором необходимо проверить регулятор напряжения генератора. В частности, аккумулятор недостаточно заряжен или перезаряжен. Если возникает эта неисправность, самое время проверить реле регулятора напряжения генератора.

Реле должно отключаться при напряжении 14,2-14,5 В.

Задача этого простого устройства — регулировать величину электрического тока, который подается от генератора к батарее. В случае выхода из строя батарея будет недозаряжена или перезаряжена, что также опасно, так как значительно сокращает срок службы батареи.

Согласитесь, такая перспектива не очень хороша для одной маленькой детали. Именно поэтому так важно проверить техническое состояние регулятора напряжения (его еще можно назвать таблеткой или планкой). Однако, чтобы правильно проверить регулятор напряжения, нужно знать его тип и некоторые важные характеристики.

Типы регуляторов напряжения

После понимания того, какие типы этих устройств, каковы их характеристики и свойства, придет полное понимание процедур контроля. Так же ответит на то, какая схема, как и чем проверить регулятор напряжения генератора.Регуляторы бывают двух типов:

В первом случае дело в том, что корпус регулятора подключается к щеточному узлу непосредственно в корпусе генератора. Во втором случае регулятор — это отдельное устройство, которое находится на кузове автомобиля, в моторном отсеке и ведет от генератора к нему, а от него ведет к аккумулятору.

Особенность регуляторов в том, что их корпуса несъемные. Как правило, их закрывают герметиком или специальной смолой. И ремонтировать их нет смысла, потому что устройство не дорогое. Поэтому основная проблема с этим ключом — проверка реле регулятора напряжения генератора. Независимо от типа регулятора знаки напряжения будут одинаковыми.

Признаки неисправности

Так что в случае низкого напряжения аккумулятор просто не будет заряжаться.

Это значит, что с утра машина не сможет завестись, может даже не загореться свет на приборной панели, или возникнут проблемы во время движения.

Например, приглушенный свет ночью, нестабильная работа электросистемы (проблемы с электроприборами — дворниками, отоплением, магнитолой и т.д.)

Высокое напряжение может вызвать падение уровня электролита в элементах батареи или его кипение. Это может вызвать появление белого налета на аккумуляторе. Если аккумулятор слишком заряжен, он может вести себя некорректно.

Признаки, неисправности и ремонт генератора и регулятора напряжения

Кроме того, можно также обратить внимание на следующие признаки выхода из строя регулятора напряжения (в некоторых случаях некоторые из них могут присутствовать, а могут и не присутствовать, все зависит от конкретной ситуации):

  • после включения зажигания контрольная лампа на панели приборов не загорается (однако может указывать на другие неисправности, например, перегорела лампа, отвалился контакт и т. д .;)
  • лампочка управления аккумулятором на панели приборов не гаснет после запуска, а это значит, что есть явные проблемы с зарядкой аккумулятора;
  • яркость фар становится зависимой от оборотов двигателя (это можно проверить где-нибудь в уединенном месте, поставив машину у стены и разогнавшись — если яркость меняется, вероятно, неисправен регулятор напряжения)
  • машина не заводится нормально с первого раза;
  • аккумулятор постоянно разряжается;
  • индикаторы на панели приборов выключаются при превышении оборотов двигателя 2000 об / мин;
  • снижаются динамические характеристики машины, особенно это заметно на высоких оборотах двигателя;
  • в некоторых случаях аккумулятор может выкипеть.
Читайте также:  Работам под наведенным напряжением это

Причины отказа реле-регулятора

Причинами выхода из строя регулятора напряжения могут быть:

  • короткое замыкание в цепи, в том числе межвитковое замыкание в обмотке возбуждения;
  • Выход из строя выпрямительного моста (выход из строя диодов);
  • переполюсовка или неправильное подключение к клеммам АКБ;попадание влаги внутрь регулятора и / или корпуса генератора (например, после мытья автомобиля или езды под сильным дождем);
  • механическое повреждение устройства;
  • естественный износ устройства, в том числе щеток;
  • невысокое качество устройства, непосредственно проверенное.
  • Есть несколько простых способов проверить регулятор вне зависимости от того, съемный узел или нет.

Самый простой способ проверить инвертор — измерить напряжение мультиметром. на клеммах аккумулятора. Однако следует отметить, что приведенный ниже алгоритм не дает 100% вероятности отказа контроллера.

Простейший способ проверки регулятора напряжения генератора

Возможно сломан сам генератор. Однако преимущество этого метода в том, что он прост и не требует демонтажа устройства с автомобиля.

Итак, алгоритм проверки регулятора напряжения генератора с помощью мультиметра следующий:

Установите тестер в режиме измерения постоянного напряжения на предельное значение около 20 В (это зависит от конкретной модели, самое главное, чтобы значения до 20 В были как можно точнее).

  • Запустить двигатель.
  • Измерьте напряжение на выводах аккумуляторной батареи на холостом ходу (1000 … 1500 об / мин). При исправном АРН и генераторе это значение должно находиться в диапазоне 13,2 … 14 В.
  • Увеличьте скорость до значения 2000 … 2500 об / мин. При нормальных условиях работы схемы соответствующее напряжение возрастет до 13,6 … 14,2В.
  • При увеличении скорости вращения до 3500 об / мин и выше напряжение не должно превышать 14,5 В.
  • Если при проверке напряжения значительно отличаются от приведенных, возможно, в автомате поврежден регулятор напряжения. Помните, что напряжение не должно опускаться ниже 12 В и не должно превышать 14,5 В.

Как упоминалось выше, регулятор может быть отделен от генератора переменного тока или объединен с ним. Сегодня практически все иномарки и большинство современных отечественных автомобилей оснащены многофункциональными реле. Это связано со спецификой их работы и экономией места.

Проверка совмещенного реле-регулятора

Проверка регулятора напряжения ВАЗ 2110

Для проведения соответствующих проверок необходимо собрать схему, показанную на рисунке.

Зарядное устройство или блок питания с регулируемой нагрузкой (важно, чтобы с его помощью можно было регулировать напряжение в цепи), лампочка на 12 В (например, от указателя поворота или фары, мощность 3 …

4 Вт), мультиметр, сам регулятор напряжения (может быть от Bosch, Valeo или другого генератора). Желательно, чтобы провода, используемые для переключения, были «зажимами-крокодилами».

Проверка регулятора напряжения в генераторе 37.3701: 1 — аккумулятор; 2 — вывод «масса» регулятора напряжения; 3 — регулятор напряжения; 4 — клемма регулятора «W»; 5 — клемма регулятора «В»; 6 — контрольная лампа; 7 — вывод «В» регулятора напряжения.

Источник

Adblock
detector