Меню

Делитель напряжения схема электрическая принципиальная

Делитель напряжения на резисторах, конденсаторах и индуктивностях

С целью получения фиксированного значения напряжения, равного доле от исходного значения, в электрических цепях применяют делители напряжения. Делители напряжения могут состоять из двух или более элементов, которыми могут служить резисторы либо реактивные сопротивления (конденсаторы или катушки индуктивности).

Делитель напряжения — комбинация из сопротивлений, служащая для того, чтобы разделить подводимое напряжение на части.

В простейшем виде делитель напряжения представляется парой участков электрической цепи, соединенных последовательно друг с другом, которые и называются плечами делителя. Верхним плечом называется тот участок, который расположен между точкой положительного напряжения и выбранной точкой соединения участков, а нижним плечом — участок между точкой соединения (выбранной точкой, нулевой точкой) и общим проводом.

Делители напряжения на резисторах

Конечно, делители напряжения могут применяться как в цепях постоянного тока, так и в цепях тока переменного. Делители на резисторах подходят и для тех, и для других цепей, однако используются они только в цепях низкого напряжения. Для питания устройств делители напряжения на резисторах не применяют.

В простейшем виде резистивный делитель напряжения состоит всего из пары резисторов, соединенных последовательно. Делимое напряжение подается на делитель, в результате на каждом резисторе падает определенная доля этого напряжения, пропорциональная номиналу резистора. Сумма падений напряжений равна здесь напряжению подаваемому на делитель.

Согласно закону Ома для участка электрической цепи, на каждом резисторе падение напряжения будет прямо пропорционально току и величине сопротивления резистора. А согласно первому правилу Кирхгофа, ток через данную цепь будет везде один и тот же. Так, на каждый резистор придутся падения напряжения:

И напряжение на концах участка цепи будет равно:

А ток в цепи делителя составит:

Теперь если подставить выражение для тока в формулы для падений напряжений на резисторах, то получим формулы для нахождения величин напряжений на каждом из резисторов делителя:

Подбирая величины сопротивлений R1 и R2 можно выделить любую часть всего подводимого напряжения. В том случае, когда напряжение нужно разделить на несколько частей, последовательно с источником напряжения включается несколько сопротивлений.

Используя делитель напряжения на резисторах для тех или иных целей, важно понимать, что присоединенная к одному из плеч делителя нагрузка, будь то измерительный прибор или что-нибудь другое, должна иметь собственное сопротивление значительно большее, чем общее сопротивление резисторов, образующих делитель. В противном случае сопротивление нагрузки само должно учитываться в расчетах, будучи рассмотрено как параллельный плечу резистор, входящий в состав делителя.

Пример: есть источник постоянного напряжения 5 вольт, необходимо подобрать к нему резисторы для делителя напряжения, чтобы снимать с делителя измерительный сигнал величиной в 2 вольта. Допустимая рассеиваемая на делителе мощность не должна превышать 0,02 Вт.

Решение: Пусть максимальная мощность, рассеиваемая на делителе, равна 0,02 Вт, тогда минимальное общее сопротивление делителя при 5 вольтах найдем из закона Ома, оно получится равно 1250 Ом. Пусть 1,47 кОм — выбранное нами общее сопротивление делителя, тогда 2 вольта упадет на 588 омах. Выберем постоянный резистор на 470 Ом и переменный на 1 кОм. Установим на переменном резисторе значение в 588 Ом.

Делители напряжения на резисторах широко применяются сегодня в электронных схемах. На этих схемах значения величин резисторов для делителей выбираются исходя из параметров активных элементов схем. Как правило, делители стоят в измерительных цепях схем, в цепях обратной связи преобразователей напряжения и т. д. Минус таких решений заключается в том, что резисторы рассеивают на себе мощность в виде тепла, однако целесообразность оправдывает эти малые потери энергии.

Делители напряжения на конденсаторах

В цепях переменного тока, в высоковольтных схемах, применяют делители напряжения на конденсаторах. Здесь используется реактивный характер сопротивления конденсаторов в цепях переменного тока. Величина реактивного сопротивления конденсатора в цепи переменного тока зависит от электроемкости конденсатора и от частоты напряжения. Вот формула для нахождения этого сопротивления:

Формула свидетельствует о том, что чем больше электроемкость конденсатора — тем его реактивное (емкостное) сопротивление меньше и чем выше частота — тем так же меньше реактивное сопротивление. Такие делители используются в измерительных схемах цепей переменного тока, падения напряжений на плечах считается аналогично случаю с постоянными активными сопротивлениями (резисторами, см. выше).

Достоинство конденсаторов, применяемых в делителях, состоит в том, что рассеивание энергии в форме тепла получается минимальным, и зависит только от качества диэлектрика.

Делитель напряжения на индуктивностях

Индуктивный делитель напряжения — еще один вид делителей, применяемых в измерительной электронике переменного тока, особенно в низковольтных схемах, работающих на высоких частотах. Сопротивление катушек для переменного тока высокой частоты носит преимущественно реактивный (индуктивный) характер, оно находится по формуле:

Формула свидетельствует о том, что чем больше индуктивность и чем выше частота — тем выше сопротивление катушки переменному току. Здесь важно понимать, что провод катушки имеет активное сопротивление, поэтому мощность, рассеиваемая в виде тепла, свойственная делителю на индуктивностях, значительно выше, чем у делителей на конденсаторах.

В любительской электронике делители напряжения часто используются при подключении аналоговых датчиков к модулям Ардуино.

Источник

Делитель напряжения: схема и расчёт

Для того, чтобы получить из исходного напряжения лишь его часть используется делитель напряжения (voltage divider). Это схема, строящаяся на основе пары резисторов.

В примере, на вход подаются стандартные 9 В. Но какое напряжение получится на выходе Vout? Или эквивалентный вопрос: какое напряжение покажет вольтметр?

Ток, протекающий через R1 и R2 одинаков пока к выходу Vout ничего не подключено. А суммарное сопротивление пары резисторов при последовательном соединении:

Таким образом, сила тока протекающая через резисторы

Теперь, когда нам известен ток в R2, расчитаем напряжение вокруг него:

Или если отавить формулу в общем виде:

Так с помощью пары резисторов мы изменили значение входного напряжения с 9 до 5 В. Это простой способ получить несколько различных напряжений в одной схеме, оставив при этом только один источник питания.

Применение делителя для считывания показаний датчика

Другое применение делителя напряжения — это снятие показаний с датчиков. Существует множество компонентов, которые меняют своё сопротивление в зависимости от внешних условий. Так термисторы меняют сопротивление от нуля до определённого значения в зависимости от температуры, фоторезисторы меняют сопротивление в зависимости от интенсивности попадающего на них света и т.д.

Если в приведённой выше схеме заменить R1 или R2 на один из таких компонентов, Vout будет меняться в зависимости от внешних условий, влияющих на датчик. Подключив это выходное напряжение к аналоговому входу Ардуино, можно получать информацию о температуре, уровне освещённости и других параметрах среды.

Значение выходного напряжения при определённых параметрах среды можно расчитать, сопоставив документацию на переменный компонент и общую формулу расчёта Vout.

Подключение нагрузки

С делителем напряжения не всё так просто, когда к выходному подключения подключается какой-либо потребитель тока, который ещё называют нагрузкой (load):

В этом случае Vout уже не может быть расчитано лишь на основе значений Vin, R1 и R2: сама нагрузка провоцирует дополнительное падение напряжения (voltage drop). Пусть нагрузкой является нечто, что потребляет ток в 10 мА при предоставленных 5 В. Тогда её сопротивление

В случае с подключеной нагрузкой следует рассматривать нижнюю часть делителя, как два резистора соединённых параллельно:

Подставив значение в общую формулу расчёта Vout, получим:

Как видно, мы потеряли более полутора вольт напряжения из-за подключения нагрузки. И тем ощутимее будут потери, чем больше номинал R2 по отношению к сопротивлению L. Чтобы нивелировать этот эффект мы могли бы использовать в качестве R1 и R2 резисторы, например, в 10 раз меньших номиналов.

Пропорция сохраняется, Vout не меняется:

Однако, у снижения сопротивления делящих резисторов есть обратная сторона медали. Большое количество энергии от источника питания будет уходить в землю. В том числе при отсоединённой нагрузке. Это небольшая проблема, если устройство питается от сети, но — нерациональное расточительство в случае питания от батарейки.

Кроме того, нужно помнить, что резисторы расчитаны на определённую предельную мощьность. В нашем случае нагрузка на R1 равна:

А это в 4-8 раз выше максимальной мощности самых распространённых резисторов! Попытка воспользоваться описанной схемой со сниженными номиналами и стандартными 0.25 или 0.5 Вт резисторами ничем хорошим не закончится. Очень вероятно, что результатом будет возгарание.

Применимость

Делитель напряжения подходит для получения необходимого заниженного напряжения в случаях, когда подключенная нагрузка потребляет небольшой ток (доли или единицы миллиампер). Примером подходящего использования является считывание напряжения аналоговым входом микроконтроллера, управление базой/затвором транзистора.

Делитель не подходит для подачи напряжения на мощных потребителей вроде моторов или светодиодных лент.

Чем меньшие номиналы выбраны для делящих резисторов, тем больше энергии расходуется впустую и тем выше нагрузка на сами резисторы. Чем номиналы больше, тем больше и дополнительное (нежелательное) падение напряжения, провоцируемое самой нагрузкой.

Если потребление тока нагрузкой неравномерно во времени, Vout также будет неравномерным.

Источник

Схемы делителей напряжения

Давайте проанализируем простую последовательную схему и определим падение напряжения на отдельных резисторах:

Рисунок 1 – Схема последовательной цепи Рисунок 2 – Табличный метод. Шаг 1

По заданным значениям отдельных сопротивлений мы можем определить общее сопротивление цепи, зная, что последовательные сопротивления суммируются.

Рисунок 3 – Табличный метод. Шаг 2

Теперь мы можем использовать закон Ома (I = E/R) для определения общего тока, который, как мы знаем, будет таким же, как ток каждого резистора, поскольку токи во всех частях последовательной цепи одинаковы.

Рисунок 4 – Табличный метод. Шаг 3

Теперь, зная, что ток в цепи равен 2 мА, мы можем использовать закон Ома (E = IR) для расчета напряжения на каждом резисторе:

Рисунок 5 – Табличный метод. Шаг 4

Должно быть очевидно, что падение напряжения на каждом резисторе пропорционально его сопротивлению, учитывая, что ток одинаков на всех резисторах. Обратите внимание, что напряжение на R2 вдвое больше, чем на R1, так же как сопротивление R2 в два раза больше, чем у R1.

Если бы мы изменили общее напряжение, то обнаружили бы, что эта пропорциональность падений напряжения остается постоянной.

Рисунок 6 – Пропорциональность падений напряжения остается постоянной

Несмотря на то, что напряжение источника изменилось, напряжение на R2 по-прежнему ровно вдвое больше, чем на R1. Пропорциональность падений напряжения (соотношение между ними) строго зависит от значений сопротивлений.

При более внимательном наблюдении становится очевидным, что падение напряжения на каждом резисторе также является фиксированной долей напряжения питания. Например, напряжение на R1 составляло 10 вольт при питании от батареи 45 вольт. Когда напряжение аккумулятора было увеличено до 180 вольт (в 4 раза больше), падение напряжения на R1 также увеличилось в 4 раза (с 10 до 40 вольт). Однако соотношение между падением напряжения R1 и общим напряжением не изменилось:

Точно так же ни один из других коэффициентов падения напряжения не изменился с увеличением напряжения питания:

Формула делителя напряжения

По этой причине последовательную цепь часто называют делителем напряжения из-за ее способности пропорционально делить общее напряжение на дробные части с постоянными коэффициентами. Применив немного алгебры, мы можем вывести формулу для определения падения напряжения на последовательном резисторе, не учитывая ничего, кроме общего напряжения, сопротивления отдельного резистора и общего сопротивления.

Падение напряжения на любом резисторе:

Сила тока в последовательной цепи:

Подставляем Eобщ/Rобщ вместо In в первую формулу.

Падение напряжения на любом резисторе в последовательнй цепи:

В схеме делителя напряжения отношение отдельного сопротивления к общему сопротивлению равно отношению отдельного падения напряжения к общему напряжению питания. Эта формула известна как формула делителя напряжения, и это сокращенный метод определения падения напряжения в последовательной цепи без проведения расчетов тока по закону Ома.

Пример использования формулы делителя напряжения

Используя эту формулу, мы можем повторно проанализировать падение напряжения в примере схемы за меньшее количество шагов:

Рисунок 7 – Схема последовательной цепи

Компоненты, делящие напряжение

Делители напряжения находят широкое применение в измерительных схемах, где как часть схемы измерения напряжения для «деления» напряжения на точные пропорции используются определенные комбинации последовательных резисторов.

Рисунок 8 – Делитель напряжения

Потенциометры как компоненты, делящие напряжение

Одним из устройств, часто используемых в качестве элемента деления напряжения, является потенциометр, который представляет собой резистор с подвижным элементом, перемещаемым ручкой или рычагом. Подвижный элемент, обычно называемый ползунком, вступает в контакт с резистивной полосой материала в любой, выбранной вручную точке:

Контакт ползунка – это обращенная влево стрелка, нарисованная в середине вертикального обозначения резистора. При перемещении вверх он контактирует с резистивной полосой ближе к клемме 1 и дальше от клеммы 2, уменьшая сопротивление от него до клеммы 1 и повышая сопротивление от него до клеммы 2. При перемещении вниз происходит противоположный эффект. Сопротивление, измеренное между клеммами 1 и 2, постоянно для любого положения ползунка.

Рисунок 10 – Принцип действия потенциометра

Поворотные и линейные потенциометры

Ниже показано внутреннее устройство двух типов потенциометров: поворотного и линейного.

Линейные потенциометры

Некоторые линейные потенциометры приводятся в действие прямолинейным движением рычага или ползунковой кнопки. Другие, подобные изображенному на рисунке выше, приводятся в действие поворотным винтом для точной регулировки. Потенциометры последнего типа иногда называют «подстроечниками» потому, что они хорошо работают в приложениях, требующих «подстройки» переменного сопротивления до некоторого точного значения.

Следует отметить, что не все линейные потенциометры имеют такое же назначение выводов, как показано на этом рисунке. У некоторых вывод ползунка находится посередине между двумя крайними выводами.

Поворотный потенциометр

На изображении ниже показана конструкция поворотного потенциометра.

Рисунок 12 – Поворотный потенциометр

На фотографии ниже показан реальный поворотный потенциометр с открытыми для удобства просмотра ползунком и резистивным элементом. Вал, который перемещает ползунок, повернут почти до конца по часовой стрелке, поэтому ползунок почти касается левого конечного вывода резистивного элемента:

Рисунок 13 – Поворотный потенциометр с открытыми ползунком и резистивным элементом

Вот тот же потенциометр с валом ползунка, перемещенным почти до упора против часовой стрелки, поэтому ползунок теперь находится рядом с другим крайним концом хода:

Рисунок 14 – Потенциометр с валом ползунка, повернутым до упора против часовой стрелки

Влияние регулировки потенциометра на схему

Если между внешними выводами (по всей длине резистивного элемента) приложено постоянное напряжение, положение ползунка будет отводить часть приложенного напряжения, измеряемого между контактом ползунка и любым из двух других выводов. Значение коэффициента деления полностью зависит от физического положения ползунка:

Рисунок 15 – Потенциометр как переменный делитель напряжения

Важность потенциометров

Как и в случае с фиксированным делителем напряжения, коэффициент деления напряжения потенциометра строго зависит от сопротивления, а не от величины приложенного напряжения. Другими словами, если ручка потенциометра или рычаг перемещается в положение 50 процентов (точное центральное положение), падение напряжения между ползунком и любым крайним выводом будет составлять ровно 1/2 от приложенного напряжения, независимо от того, что с этим напряжением происходит, или каково полное сопротивление потенциометра. Другими словами, потенциометр работает как регулируемый делитель напряжения, где коэффициент деления напряжения устанавливается положением ползунка.

Это применение потенциометра является очень полезным средством получения изменяемого напряжения от источника фиксированного напряжения, такого как аккумулятор. Если для схемы, которую вы собираете, требуется определенная величина напряжения, которая меньше, чем значение напряжения доступной батареи, вы можете подключить внешние выводы потенциометра к этой батарее и «выбрать» для использования в вашей цепи любое необходимое напряжение между ползунком и одним из внешних выводов потенциометра:

Рисунок 16 – Применение потенциометра

При таком использовании название «потенциометр» имеет смысл: он «измеряет» (контролирует) приложенный к нему потенциал (напряжение), создавая изменяемый коэффициент деления напряжения. Такое использование трехполюсного потенциометра в качестве переменного делителя напряжения очень популярно в схемотехнике.

Примеры небольших потенциометров

Ниже показано несколько небольших потенциометров, которые обычно используются в бытовом электронном оборудовании, а также любителями и студентами при построении схем:

Рисунок 17 – Примеры небольших потенциометров

Меньшие устройства слева и справа предназначены для подключения к беспаечной макетной плате или для пайки в печатную плату. Устройства посередине предназначены для установки на плоской панели с проводами, припаянными к каждому из трех выводов.

Ниже показано еще три потенциометра, более специализированных, чем только что показанный набор:

Рисунок 18 – Примеры потенциометров размером побольше

Большое устройство «Helipot» – это лабораторный потенциометр, предназначенный для быстрого и легкого подключения к цепи. Устройство в нижнем левом углу фотографии представляет собой потенциометр того же типа, только без корпуса и поворотного счетного диска. Оба этих потенциометра представляют собой прецизионные устройства, в которых используются многооборотные спиралевидные резистивные ленты и ползунковые механизмы для точной регулировки. Устройство в правом нижнем углу представляет собой потенциометр для монтажа на панели, предназначенный для работы в тяжелых промышленных условиях.

Источник

Читайте также:  Райдер 8000ва стабилизатор напряжения схема
Adblock
detector