Меню

Диод ограничитель напряжения маркировка

Супрессор

Обозначение, параметры и применение защитных диодов

Среди всего многообразия полупроводниковых приборов, наверное, самая большая семья у диодов. Диоды Шоттки, диоды Ганна, стабилитроны, светодиоды, фотодиоды, туннельные диоды и ещё много разных типов и областей применения.

Один из классов полупроводниковых диодов в нашей литературе называется ПОН (полупроводниковый ограничитель напряжения) или супрессор. В зарубежной технической литературе используется название TVS-диод (Transient Voltage Suppressor). Очень часто TVS-диоды называют по маркам производителей: TRANSIL, INSEL.

В технической литературе и среди радиолюбителей супрессор могут называть по-разному: защитный диод, ограничительный стабилитрон, TVS-диод, трансил, ограничитель напряжения, ограничительный диод. Супрессоры можно частенько встретить в импульсных блоках питания – там они служат защитой от перенапряжения питаемой схемы при неисправностях импульсного блока питания.

Рассмотрим, что же такое TVS-диод, его принцип действия, в каких схемах и для каких целей используется.

TVS-диоды были созданы в 1968 году в США для защиты промышленной аппаратуры от разрядов атмосферного электричества. В условиях эксплуатации электронных приборов как промышленного, так и бытового назначения большое значение придаётся защите этих приборов именно от природных электрических импульсов.

Очень часто возникают броски напряжения и на силовых трансформаторных подстанциях. В таких случаях бытовая техника выходит из строя сотнями. Поскольку на промышленных предприятиях комплексная защита имеется, а жилые дома в этом случае совершенно не защищены.

По некоторым данным потери связанные с выходом из строя и последующим ремонтом всей электронной аппаратуры в США составляют около $12 млрд. в год. Специалисты посчитали, что и в нашей стране потери соответствуют этой сумме.

Для защиты аппаратуры от воздействия электрических перенапряжений и был разработан класс полупроводниковых приборов называемых TVS-диоды или “супрессоры”. Иногда в разговоре можно услышать: диодный предохранитель.

Обозначение на схеме.

На принципиальных схемах супрессор (ака защитный диод) обозначается так (VD1, VD2 — симметричные; VD3 — однонаправленные).

Принцип работы супрессора (защитного диода).

У TVS-диодов ярко выраженная нелинейная вольт-амперная характеристика. Если амплитуда электрического импульса превысит паспортное напряжение для конкретного типа диода, то он перейдёт в режим лавинного пробоя. То есть TVS-диод ограничит импульс напряжения до нормальной величины, а “излишки” уходят на корпус (землю) через диод. Более наглядно процесс выглядит на рисунке.

До тех пор пока не возникает угроза выхода из строя электронного прибора, TVS-диод не оказывает никакого влияния на работу техники. У этого полупроводникового прибора более высокое быстродействие по сравнению с ограничителями, которые использовались раньше.

Предохранительные диоды выпускаются как несимметричные (однонаправленные), так и симметричные (двунаправленные). Симметричные могут работать в цепях с двуполярными напряжениями, а несимметричные только с напряжением одной полярности. Ещё одна типовая схема подключения (для двунаправленного диода).

Для однонаправленного супрессора схема выглядит чуть по-другому.

В случае повышения входного напряжения прибор за очень короткое время уменьшает своё сопротивление. Ток в цепи резко возрастает и происходит перегорание предохранителя. Поскольку супрессор срабатывает очень быстро, то оборудованию не наносится вреда. Отличительной чертой TVS-диодов является очень короткое время реакции на превышение напряжения. Это одна из «фишек» защитных диодов.

Основные электрические параметры супрессоров.

U проб. (В) – значение напряжения пробоя. В зарубежной технической документации этот параметр обозначается как VBR (Breakdown Voltage). Это значение напряжения, при котором диод резко открывается и отводит опасный импульс тока на общий провод («на землю»).

I обр. (мкА) – значение постоянного обратного тока. Это значение максимального обратного тока утечки, который есть у всех диодов. Он очень мал и практически не оказывает никого влияния на работу схемы. Иное обозначение – IR (Max. Reverse Leakage Current). Так же может обозначаться как IRM.

U обр. (В) – постоянное обратное напряжение. Соответствует англоязычной аббревиатуре VRWM (Working Peak Reverse Voltage). Может обозначаться как VRM.

U огр. имп. (В) – максимальное импульсное напряжение ограничения. В даташитах обозначается как VCL или VCMax. Clamping Voltage или просто Clamping Voltage.

Читайте также:  Какое максимальное напряжение могут иметь переносные светильники

I огр. мах. (А) – максимальный пиковый импульсный ток. На английский манер обозначается как IPP (Max. Peak Pulse Current). Данное значение показывает, какое максимальное значение импульса тока способен выдержать супрессор без разрушения. Для мощных супрессоров это значение может достигать нескольких сотен ампер!

P имп. (Ватт) – максимальная допустимая импульсная мощность. Этот параметр показывает, какую мощность может подавить супрессор. Напомним, что слово супрессор произошло от английского слова Suppressor, что в переводе означает «подавитель». Зарубежное название параметра Peak Pulse Power (PPP).

Значение максимальной импульсной мощности можно найти перемножением значений U огр. имп. (VCL) и I огр. мах. (IPP).

Вольт-амперные характеристики симметричного и несимметричного TVS-диода выглядят следующим образом.


ВАХ однонаправленного защитного диода (супрессора)


ВАХ двунаправленного супрессора

Большим минусом этих диодов можно считать большую зависимость максимальной импульсной мощности от длительности импульса. Обычно рассматривается работа TVS-диода при подаче на него импульса с минимальным временем нарастания порядка 10 микросекунд и малой длительностью.

Например, при длительности импульса 50 микросекунд диод типа SMBJ 12A выдерживает импульсный ток, превышающий номинальный почти в четыре раза.

Очень хорошо зарекомендовали себя малогабаритные диоды TRANSZORB TM серии 1.5КЕ6.8 – 1.5КЕ440 (С)A. Они выпускаются как в симметричном, так и в несимметричном исполнении. Для симметричного диода к обозначению добавляется буква С или СА. У этой серии большой диапазон рабочих напряжений от 5,0 до 376 вольт, малое время срабатывания 1*10-9 сек, способность к подавлению импульсов большой мощности до 1500 Вт. Они прекрасно зарекомендовали себя в схемах защиты телевизионного, цифрового и другого современного оборудования.

Диоды выпускаются в корпусе DO-201.

Размеры указаны в дюймах и миллиметрах (в скобках). Несимметричные супрессоры имеют на корпусе цветное маркировочное кольцо, которое расположено ближе к катодному выводу.

На корпусе указана маркировка защитного диода, в которой зашифрованы его основные параметры.

Диоды TRANSIL TM фирмы THOMSON широко используются для защиты автомобильной электроники от перенапряжений. Самым сильным источником электрических импульсов является система зажигания. Для защиты автомобильного музыкального центра достаточно одного диода TRANSIL TM .

Двунаправленные диоды TRANSIL TM 1.5КЕ440СА с успехом применяются для защиты бытовой электронной аппаратуры в сетях 220 вольт. Их применение наиболее эффективно для защиты объектов, которые подключены к воздушным линиям. В этом случае будет защита и от атмосферных электрических импульсов и от импульсных перенапряжений по цепям питания.

Источник

Защитные диоды — супрессоры для защиты от перенапряжений

Маркировка защитного диода Структура защитного диода Пиковая мощность защитного диода Рабочее напряжение защитного диода Мин. напряжение открытого диода Макс. напряжение открытого диода Макс. ток утечки Макс. напряжение ограничения Пиковый ток защитного диода Корпус защитного диода Склад Заказ
P4SMAJ5.0A униполярный 400 Вт 5 В 6,4 В 7,55 В 1,6 мА 9,6 В 41,6А SMA
P4SMAJ5.0CA биполярный 400 Вт 5 В 6,4 В 7,25 В 1,6 мА 9,2 В 43,5А SMA
P4SMAJ14A униполярный 400 Вт 14 В 15,6 В 17,2 В 1 мкА 23,2 В 17,2А SMA
1.5SMCJ14CA биполярный 1500 Вт 14 В 15,6 В 17,9 В 1 мкА 23,2 В 64,7А SMC
1.5SMCJ16A униполярный 1500 Вт 16 В 17,8 В 20,5 В 1 мкА 26 В 57,7А SMC
1.5SMCJ18A униполярный 1500 Вт 18 В 20 В 23,3 В 1 мкА 29,2 В 51,4А SMC
1.5SMCJ28A униполярный 1500 Вт 28 В 31,1 В 35,8 В 1 мкА 45,4 В 33А SMC
Цены в формате .pdf, .xls Купить

Упаковка: В блистр-ленте на катушке диаметром 330 мм по 3000 защитных диодов 1,5SMCJ14A и по 7500 защитных диодов P4SMAJ.

Диапазон рабочих температур: -55. +150°C

Назначение TVS диодов

Маркировка TVS диода Применение TVS диодов
P4SMAJ5.0A униполярные, для защиты 5В цепей питания постоянного тока
P4SMAJ5.0CA биполярный, для цепей переменного тока или сигналов
P4SMAJ14A 1.5SMC16A униполярные, для 12В цепей стабилизированого питания постоянного тока
1.5SMC18A униполярные, для защиты 12В цепей питания при использование бортовой сети автомобиля
1.5SMCJ28A униполярные, для защиты 24В цепей питания при использование бортовой сети автомобиля

Защитные диоды работают на обратимом лавинном пробое полупроводникового перехода, поэтому их справедливо называть лавинными диодами. Лавинно пролетные диоды для защиты от перенапряжений применяются в цепях питания радиоэлектронной аппаратуры. Совместно с газовыми разрядниками и варисторами обеспечивают молниезащиту электрооборудования. Для защиты от импульсного перенапряжения и статическогго электричества в интерфейсах передачи данных применяется одиночный ESD супрессор или многоканальная защитная диодная сборка. Защита цепей питания от превышения тока потребления осуществляется предохранителями. Различают одноразовые плавкие предохранители и многоразовые самовосстанавливающиеся предохранители.

Технические характеристики защитных диодов в SMA

Технические характеристики защитных диодов в SMC

Производитель TVS диодов супрессоров — PANJIT .

Источник

Защитный диод (супрессор): принцип работы, как проверить TVS-диод.

Защитный диод — гость нашего обзора полупроводников.

Мощность помех, влияющих на уровень напряжения в приборе, может быть различна. Для противостояния высокоэнергетическим импульсам возможно применение газовых разрядников и защитных тиристоров. Чтобы обезопаситься от средне- и маломощных воздействий больше подойдут защитные диоды и варисторы.

Защитный диод, наиболее часто выполняемый из кремния, может носить название:

  • Супрессора;
  • Ограничительного стабилитрона;
  • Диодный предохранитель;
  • TVS-диода;
  • Трансила;
  • Полупроводникового ограничителя напряжений (ПОН) и т.д.

Зачастую супрессор становится одной из составных частей импульсного питающего блока, поскольку в случае неисправности блока супрессор может защитить его от перенапряжения. Изначально защитный диод был создан в качестве страховки от атмосферных электрических воздействий на приборы.

Существует несколько сфер современного применения ограничительных стабилитронов:

  • Защита наземных приборов от воздействия природных явлений (удары молний);
  • Защита авиатехники;
  • Страховка от воздействия импульсов электрической природы при неисправности питающего блока.[/google_font]

Принципы действия

Защитный диод обладает специфической ВА характеристикой, отличающейся нелинейностью. При условии, что размер амплитуды импульса окажется больше допустимого, то это повлечёт за собой так называемый «лавинный пробой». Иными словами, размер амплитуды будет нормирован, а все излишки будут выведены из сети через защитный диод.

Рис 1 Защитный диод- принцип работы полупроводника

Принцип работы TVS-диода предполагает, что до момента возникновения опасности диодный предохранитель никоим образом не оказывает влияние на сам прибор и его функциональные свойства. Таким образом, необходимо отметить, что выявляется ещё одно название для защитного диода — лавинный диод.

Существует два типа ограничительных стабилитронов:

Защитный диод, двунаправленный приспособленный для работы в сетях с переменным током.

Применимы только для сетей с постоянным током, поскольку имеют однонаправленный рабочий режим. Способ подключения несимметричного защитного диода не соответствует стандартному. Его анод соединяется с минусовой шиной, а катод — с плюсовой. Положение получается условно перевёрнутым.

Кодировка защитных диодов, относящихся к симметричным, включает в себя литеры «С» или «СА«. У несимметричных диодных предохранителей имеется цветная маркировка в виде полосы на стороне катодного вывода.

Корпус каждого защитного диода также снабжён маркировочным кодом, в сжатом виде отображающим все значимые параметры.

Если входной уровень напряжения у диода увеличится, то стабилитрон в течение очень краткого временного отрезка уменьшит показатель внутреннего сопротивления. Сила тока в этот момент, напротив, возрастёт, а предохранитель перегорит. Поскольку действует защитный диод практически моментально, целостность основной схемы не нарушается. На деле, быстрая реакция на переизбыток напряжения является самым главным достоинством TVS-диода.

Значимые характеристики защитных диодов

Значение напряжения, при котором происходит открытие диода и уведение потенциала к общему проводу. Дополнительное синонимичное обозначение — VBR.

Максимальный обратный ток утечки. Имеет маленькое значение, измеряемое в микроамперах, и функциональность устройства от него практически не зависит. Дополнительное обозначение — IR.

Значение является показателем постоянного обратного напряжения. VRWM.

Наибольшее значение по импульсному напряжению ограничения. VCL, VCmax.

Наибольшее значение пикового импульсного тока. Иначе это показатель наибольшей силы безопасного для защитного диода токового импульса. Для наиболее действенных ограничительных стабилитронов данное значение может составлять сотни ампер. IPP.

Показатель наибольшего значения допустимой импульсной мощности. К сожалению данный параметр крайне зависим от длительности импульса.

Рис 2 ВА характеристики защитного диода

Уровень мощности у защитных диодов неодинаков. Тем не менее, если исходных данных по этому параметру у супрессора недостаточно, его спокойно можно скомбинировать ещё с одним или несколькими полупроводниками, что положительно скажется на общем уровне мощности.

TVS-диод может выполнять функцию стабилитрона. Но прежде необходимо проверить его максимально рассеиваемую мощность и динамический ток при Imax. и Imin.

Проверка целостности защитного диода

Проверка на целостность защитного, как и выпрямительного (в том числе силового), диода осуществляется мультиметром (как вариант, можно применить омметр). Использовать прибор с этой целью можно только в режиме прозвонки.

Рис 3 Проверка защитного диода

Когда мультиметр готов, необходимо щупами соединить его с выводами супрессора (положительный-красный с анодом, отрицательный-чёрный с катодом). Когда это будет сделано, на дисплее тестирующего устройства высветится число обозначающее пороговое напряжение проверяемого диодного предохранителя. При смене полярности подключения должна высветиться бесконечная величина сопротивления. Если всё так и вышло, то элемент исправен.

В случае выявления утечки во время смены полюсов, можно говорить о дисфункциональности элемента и необходимости его замены. Аналогично можно проверить защитный диод автомобильного генератора.

Основные качества TVS-диодов

  • Способность стабильно функционировать в условиях обратного напряжения;
  • Обратные токи должны быть на самом деле минимальны, чтобы никак не влиять на функциональность прибора в целом.
  • Скорость реакции на быстрое критическое воздействие должна находиться на минимально возможном уровне.
  • Максимально возможный показатель по уровню рассеиваемой мощности.

Но, в качестве итога, необходимо признать, что выполнение одного условия зачастую влечёт за собой нарушение другого.

Помимо этого, TVS-диод в принципе нельзя отнести к числу идеальных защитных ограничителей. Так, например, защитные диоды супрессоры в положении «выключено» можно характеризовать достаточно большими обратными токами. Далее, вызывает неодобрение резкость при смене режимов. Наибольшей же проблемой считается то, что в ограничивающем режиме уровень напряжения находится в прямой зависимости от силы тока.

Необходимо помнить, что все даваемые производителем характеристики диода являются таковыми только в конкретных температурных условиях. При более высоких температурах допустимая пиковая мощность и токи уменьшатся.

Впрочем, несмотря даже на такие недостатки, диодные предохранители всё-таки оказываются лучше приборов, устройств и элементов с аналогичным назначением.

Области применения защитных диодов

Существуют несколько направлений, в которых может применяться супрессор:

  • Силовая электроника (источник питания с постоянным напряжением, драйвер электродвигателя, инвентор и т.д.);
  • Телекоммуникации;
  • Схемы управления (сохранность входов и выходов операционного усилителя, транзисторных затворов, входных и выходных линий и т.д.);
  • Цифровой интерфейс.

Как правильно подобрать защитный диод?

Применение следующих правил поможет избежать проблем с покупкой защитного диода. Чтобы не ошибиться в выборе, необходимо:

  1. Определиться с типом напряжения (будет оно переменным или постоянным?);
  2. TVS потребуется одно- или двунаправленный;
  3. Узнать каков уровень номинального напряжения на линии, которую надо будет защищать;
  4. Осведомиться о максимальном значении Iогр. и Uогр.max. в условиях нагрузки;
  5. Выявить верхнюю и нижнюю температурную границу, при которой будет работать прибор;
  6. Решить, каким образом будет монтироваться элемент (поверхностно/с помощью отверстий);
  7. С опорой на все выявленные данные необходимо определиться с подходящей серией и оптимальным вариантом диода.
  • Насколько велико обратное напряжение диода (оно должно превышать номинальное напряжение схемы, если данный момент не учитывается, то диод будет «включаться» даже не имея на то причин);
  • Уровень Uогр. обязан быть меньше Umax. на линии, которую требуется защищать;
  • Что даже если диод выбран в соответствии со всеми нуждами, его действие всё равно нужно проверить во всём необходимом температурном диапазоне;
  • Удостовериться в том, что размеры диода и прочие нюансы позволяют его адекватный монтаж.

Источник

Adblock
detector