Меню

Диод по току напряжению марка

Выпрямительный диод на 10 ампер

Устройство и конструктивные особенности

Основной элемент конструкции – полупроводник. Это пластина кристалла кремния или германия, у которого имеются две области р и n проводимости. Из-за этой особенности конструкции она получила название плоскостной.

При изготовлении полупроводника обработка кристалла производится следующим образом: для получения поверхности р-типа ее обрабатывают расплавленным фосфором, а р-типа – бором, индием или алюминием. В процессе термообработки происходит диффузия этих материалов и кристалла. В результате образуется область с р-n переходом между двумя поверхностями с различной электропроводимостью. Полученный таким образом полупроводник устанавливается в корпус. Это обеспечивает защиту кристалла от посторонних факторов воздействия и способствует теплоотводу.


Конструкция (1), внешний вид (2) и графическое отображение выпрямительного диода(3)

Обозначения:

  • А – вывод катода.
  • В – кристалладержатель (приварен к корпусу).
  • С – кристалл n-типа.
  • D – кристалл р-типа.
  • E – провод ведущий к выводу анода.
  • F – изолятор.
  • G – корпус.
  • H – вывод анода.

Как уже упоминалось, в качестве основы р-n перехода используются кристаллы кремния или германия. Первые применяются значительно чаще, это связано с тем, что у германиевых элементов величина обратных токов значительно выше, что существенно ограничивает допустимое обратное напряжение (оно не превышает 400 В). В то время как у кремниевых полупроводников эта характеристика может доходить до 1500 В.

Помимо этого у германиевых элементов значительно уже диапазон рабочей температуры, он варьируется в пределах от -60°С до 85°С. При превышении верхнего температурного порога резко увеличивается обратный ток, что отрицательно отражается на эффективности устройства. У кремниевых полупроводников верхний порог порядка 125°С-150°С.

Классификация по мощности

Мощность элементов определяется максимально допустимым прямым током. В соответствии этой характеристики принята следующая классификация:

    Слаботочные выпрямительные диоды, они используются в цепях с током не более 0,3 А. Корпус таких устройств, как правило, выполнен из пластмассы. Их отличительные особенности – малый вес и небольшие габариты.


Выпрямительные диоды малой мощности

Устройства, рассчитанные на среднюю мощность, могут работать с током в диапазоне 0,3-10 А. Такие элементы, в большинстве своем, изготавливаются корпусе из металла и снабжены жесткими выводами. На одном один из них, а именно на катоде, имеется резьба, позволяющая надежно зафиксировать диод на радиаторе, используемого для отвода тепла.


Выпрямительный диод средней мощности

Силовые полупроводниковые элементы, они рассчитаны на прямой ток свыше 10 А. Производятся такие устройства в металлокерамических или металлостеклянных корпусах штыревого (А на рис. 4) или таблеточного типа (В).


Рис. 4. Выпрямительные диоды высокой мощности

Маркировка диодов

Маркировка полупроводниковых диодов, рассчитанных на сравнительно небольшие токи (до 10 А) состоит из шести буквенных и цифровых элементов:

  • первый элемент обозначает исходный материал: К или 2 – кремний; Г или 1 – германий; А или 3 – арсенид галлия.
  • второй буквенный элемент обозначает тип прибора: Д – диоды выпрямительные; А – сверхвысокочастотные диоды; В – варикапы; И – туннельные диоды; С – стабилитроны; Л – светодиоды.
  • третий, четвертый, пятый элементы – цифры, характеризующие некоторые электрические параметры прибора, в частности мощность рассеяния.
  • шестой элемент – буква (от А до Я), обозначающая последовательность разработки.
Читайте также:  Значок напряжения постоянного тока

Полупроводниковые диоды, рассчитанные на токи от 10 А до 2000 А и более часто называют силовыми неуправляемыми вентилями и маркируют буквой В (вентиль), после которой проставляется число, указывающее значение прямого номинального тока. В качестве силовых, в основном используют кремниевые диоды, которые делятся на группы, классы и подклассы.


Таблица маркировки диодов.

Вместо понятия напряжения пробоя Uпр. обычно используют понятие Uзаг.( напряжение загиба ВАХ), так как напряжение пробоя всегда чуть больше напряжения загиба. Напряжение загиба – это максимальное напряжение цепи, которое выдерживает вентиль не пробиваясь. Класс диода (вентиля) определяют по значению допустимого напряжения отношением. Допустимое напряжение – это максимальное напряжение цепи, в которую может быть поставлен данный вентиль. Т.е. для определения класса вентиля в значении допустимого напряжения мысленно убирают две последние цифры, тогда оставшееся число показывает класс вентиля. Класс вентиля показывает количество сотен Вольт допустимого напряжения.

Интересно почитать: принцип действия и основные характеристики варисторов.

Допустимое напряжение принимается для обычных диодов равным половине напряжения загиба, а для лавинных диодов 0.7 Uзаг. Пример. Если напряжение загиба обычного вентиля составляет 850 В, то допустимое напряжение – 425В, т.е. класс вентиля – 4. По назначению диоды разделяются на следующие:

  • выпрямительные диоды (как разновидность выпрямительных – силовые), которые предназначены для выпрямления переменного тока низкой частоты (рис. 8.3, а). В качестве выпрямительных диодов используют плоскостные диоды, допускающие большие выпрямительные токи;
  • высокочастотные диоды, предназначенные для выпрямления переменного тока в широком диапазоне частот, а также для детектирования. В качестве высокочастотных диодов применяют диоды точечной конструкции;
  • импульсные диоды, которые применяют в схемах генерирования и усиления импульсов микросекундного и наносекундного диапазонов;
  • туннельные диоды (рис. 8.3, в), применяемые в качестве усилителей и генераторов высокочастотных колебаний;
  • светодиоды (рис. 8.3, е), которые используют в качестве световой индикации наличия тока и которые имеют разные цвета свечения;
  • стабилитроны (рис. 8.3, б), предназначенные для стабилизации уровня напряжения при изменениях значения протекающего через них тока;
  • варикапы (рис. 8.3, г) – полупроводниковые диоды, емкость которых можно изменять в широких пределах;
  • фотодиоды (рис. 8.3, д), которые являются источниками тока, преобразующими световую энергию в электрическую, причем сила тока пропорциональна освещенности фотодиода.

Будет интересно➡ Маркировка SMD транзисторов

Первый элемент (цифра или буква) обозначает исходный полупроводниковый материал, второй (буква) — подкласс приборов, третий (цифра) — основные функциональные возможности прибора, четвертый — число, обозначающее порядковый номер разработки, пятый элемент — буква, условно определяющая классификацию (разбраковку по параметрам) приборов, изготовленных по единой технологии.

Перечень основных характеристик

Ниже приведена таблица, с описанием основных параметров выпрямительных диодов. Эти характеристики можно получить из даташита (технического описания элемента). Как правило, большинство радиолюбителей к этой информации обращаются в тех случаях, когда указанный в схеме элемент недоступен, что требует найти ему подходящий аналог.

Читайте также:  Иск в суд по напряжению


Таблица основных характеристик выпрямительных диодов

Заметим, что в большинстве случаев, если требуется найти аналог тому или иному диоду, первых пяти параметров из таблицы будет вполне достаточно. При этом желательно учесть диапазон рабочей температуры элемента и частоту.

Выпрямительные диоды


Выпрямительные диоды — диоды, предназначенные для преобразования переменного тока в постоянный. На смену электровакуумным диодам и игнитронам пришли диоды из полупроводниковых материалов и диодные мосты (четыре диода в одном корпусе). Обычно к быстродействию, ёмкости p-n перехода и стабильности параметров выпрямительных диодов не предъявляют специальных требований.

Название Описание
1N4001 Выпрямительный диод 50 В, 1 А
1N4001G Выпрямительный диод 50 В, 1 А
1N4001S Кремниевый выпрямительный диод 50 В, 1 А
1N4001SG Выпрямительный диод 50 В, 1 А
1N4002 Выпрямительный диод 100 В, 1 А
1N4002G Выпрямительный диод 100 В, 1 А
1N4002S Кремниевый выпрямительный диод 100 В, 1 А
1N4002SG Выпрямительный диод 100 В, 1 А
1N4003 Выпрямительный диод 100 В, 1 А
1N4003G Выпрямительный диод 200 В, 1 А
1N4003S Кремниевый выпрямительный диод 200 В, 1 А
1N4003SG Выпрямительный диод 200 В, 1 А
1N4004 Выпрямительный диод 400 В, 1 А
1N4004G Выпрямительный диод 400 В, 1 А
1N4004S Кремниевый выпрямительный диод 400 В, 1 А
1N4004SG Выпрямительный диод 400 В, 1 А
1N4005 Выпрямительный диод 600 В, 1 А
1N4005G Выпрямительный диод 600 В, 1 А
1N4005S Кремниевый выпрямительный диод 600 В, 1 А
1N4005SG Выпрямительный диод 600 В, 1 А
1N4006 Выпрямительный диод 800 В, 1 А
1N4006G Выпрямительный диод 800 В, 1 А
1N4006S Кремниевый выпрямительный диод 800 В, 1 А
1N4006SG Выпрямительный диод 800 В, 1 А
1N4007 Выпрямительный диод 1000 В, 1 А
1N4007G Выпрямительный диод 1000 В, 1 А
1N4007S Кремниевый выпрямительный диод 1000 В, 1 А
1N4007SG Выпрямительный диод 1000 В, 1 А
1N5391 Кремниевый выпрямительный диод 50 В, 1.5 А
1N5391S Кремниевый выпрямительный диод 50 В, 1.5 А
1N5392 Кремниевый выпрямительный диод 100 В, 1.5 А
1N5392S Кремниевый выпрямительный диод 100 В, 1.5 А
1N5393 Кремниевый выпрямительный диод 200 В, 1.5 А
1N5393S Кремниевый выпрямительный диод 200 В, 1.5 А
1N5395 Кремниевый выпрямительный диод 400 В, 1.5 А
1N5395S Кремниевый выпрямительный диод 400 В, 1.5 А
1N5397 Кремниевый выпрямительный диод 600 В, 1.5 А
1N5397S Кремниевый выпрямительный диод 600 В, 1.5 А
1N5398 Кремниевый выпрямительный диод 800 В, 1.5 А
1N5398S Кремниевый выпрямительный диод 800 В, 1.5 А
1N5399 Кремниевый выпрямительный диод 1000 В, 1.5 А
1N5399S Кремниевый выпрямительный диод 1000 В, 1.5 А
1N5400 Кремниевый выпрямительный диод 50 В, 3 А
1N5401 Кремниевый выпрямительный диод 100 В, 3 А
1N5402 Кремниевый выпрямительный диод 200 В, 3 А
1N5404 Кремниевый выпрямительный диод 400 В, 3 А
1N5406 Кремниевый выпрямительный диод 600 В, 3 А
1N5407 Кремниевый выпрямительный диод 800 В, 3 А
1N5408 Кремниевый выпрямительный диод 1000 В, 3 А
1T1 Кремниевый выпрямительный диод 50 В, 1 А
1T2 Кремниевый выпрямительный диод 100 В, 1 А
1T3 Кремниевый выпрямительный диод 200 В, 1 А
1T4 Кремниевый выпрямительный диод 400 В, 1 А
1T5 Кремниевый выпрямительный диод 600 В, 1 А
Читайте также:  Болит горло при напряжении голосовых связок

Страница 1. Смотреть страницу 2 3 4 5 6 7

Принцип работы

Проще всего объяснить принцип действия выпрямительных диодов на примере. Для этого смоделируем схему простого однополупериодного выпрямителя (см. 1 на рис. 6), в котором питание поступает от источника переменного тока с напряжением UIN (график 2) и идет через VD на нагрузку R.


Рис. 6. Принцип работы однодиодного выпрямителя

Во время положительного полупериода, диод находится в открытом положении и пропускает через себя ток на нагрузку. Когда приходит очередь отрицательного полупериода, устройство запирается, и питание на нагрузку не поступает. То есть происходит как бы отсечение отрицательной полуволны (на самом деле это не совсем верно, поскольку при данном процессе всегда имеется обратный ток, его величина определяется характеристикой Iобр).

В результате, как видно из графика (3), на выходе мы получаем импульсы, состоящие из положительных полупериодов, то есть, постоянный ток. В этом и заключается принцип работы выпрямительных полупроводниковых элементов.

Заметим, что импульсное напряжение, на выходе такого выпрямителя подходить только для питания малошумных нагрузок, примером может служить зарядное устройство для кислотного аккумулятора фонарика. На практике такую схему используют разве что китайские производители, с целью максимального удешевления своей продукции. Собственно, простота конструкции является единственным ее полюсом.

К числу недостатков однодиодного выпрямителя можно отнести:

  • Низкий уровень КПД, поскольку отсекаются отрицательные полупериоды, эффективность устройства не превышает 50%.
  • Напряжение на выходе примерно вдвое меньше, чем на входе.
  • Высокий уровень шума, что проявляется в виде характерного гула с частотой питающей сети. Его причина – несимметричное размагничивание понижающего трансформатора (собственно именно поэтому для таких схем лучше использовать гасящий конденсатор, что также имеет свои отрицательные стороны).

Заметим, что эти недостатки можно несколько уменьшить, для этого достаточно сделать простой фильтр на базе высокоемкостного электролита (1 на рис. 7).


Рис. 7. Даже простой фильтр позволяет существенно снизить пульсации

Принцип работы такого фильтра довольно простой. Электролит заряжается во время положительного полупериода и разряжается, когда наступает черед отрицательного. Емкость при этом должна быть достаточной для поддержания напряжения на нагрузке. В этом случае импульсы несколько сгладятся, примерно так, как продемонстрировано на графике (2).

Приведенное решение несколько улучшит ситуацию, но ненамного, если запитать от такого однополупериодного выпрямителя, например, активные колонки компьютера, в них будет слышаться характерный фон. Для устранения проблемы потребуются более радикальное решение, а именно диодный мост. Рассмотрим принцип работы этой схемы.

Источник

Adblock
detector