Меню

Для автотрансформатора напряжения короткого замыкания

Расчет сопротивлений автотрансформатора

Требуется рассчитать сопротивления обмоток трехобмоточного автотрансформатора типа АТДЦТН-125000/220/110 мощностью Sн = 125 МВА, напряжением 230/121±6х2%/11 кВ.

Схема замещения трехобмоточного автотрансформатора представлена на рис.1.

Расчет будет выполняться без учета крайних положений РПН, в связи с тем, что полученные значения сопротивлений автотрансформатора нужны для определения потери напряжения в автотрансформаторе и вторичного напряжения на шинах приемной подстанции.

Если же вам нужно выполнить расчет токов короткого замыкания, тогда вам обязательно нужно учитывать величину реактивного сопротивления автотрансформатора с учетом крайних положений РПН.

Так как схема замещения автотрансформатора такая же, как и в трехобмоточного трансформатора в виде трехлучевой звезды, то и методика расчета сопротивлений ничем не отличается.

1. По ГОСТ 17544-85 таблица 9 определяем напряжение короткого замыкания для обмоток:

1. Определяем реактивные падения напряжения между каждой парой обмоток автотрансформатора в относительных единицах равными Uк по формулам 11-6 [Л1, с.242], в процентах:

  • Uк1 = 0,5*(Uк1-2 + Uк1-3 — Uк2-3) = 0,5*(11 + 45 — 28) = 14%
  • Uк2 = 0,5*(Uк2-3+Uк1-2-Uк1-3) = 0,5*(28 + 11 -45) = -3
  • Uк3 = 0,5*(Uк1-3+Uк2-3-Uк1-2) = 0,5*(45 + 28 — 11) = 31%

2. Определяем сопротивление ветвей, отнесенное к номинальному напряжению обмотки ВН автотрансформатора по формуле 11-5 [Л1, с.242]:

  • Uк1, Uк3 – реактивные падения напряжения между каждой парой обмоток автотрансформатора, %;
  • Uн = 230 кВ – номинальное напряжение автотрансформатора;
  • Sн = 125 МВА – номинальная мощность автотрансформатора;

3. Отношение мощностей обмоток низшего напряжения НН и номинальной (проходной) мощности автотрансформатора [Л1, с.248]:

  • Sнн = 63 МВА – номинальная мощность обмотки НН, согласно ГОСТ 17544-85 таблица 4;
  • Sн = 125 МВА – номинальная мощность автотрансформатора.

4. Определяем потери мощности короткого замыкания в обмотках ВН-НН и СН-НН, отнесенные к номинальной мощности автотрансформатора:

где: Uн = 230 кВ –номинальное напряжение обмотки ВН, согласно ГОСТ 17544-85 таблица 4.

5. Определяем активные сопротивления между выводами обмоток ВН-СН, ВН-НН и СН-НН, приведенные к номинальному напряжению обмотки ВН по формуле 11-3 [Л1, с.248]:

где: ΔРк = 315 кВт – потери активной мощности короткого замыкания для основной пары обмоток, определяется по ГОСТ 17544-85 таблица 9;

6. Определяем активные сопротивления ветвей схемы замещения автотрансформатора, определяемые по аналогии с формулами 11-6 [Л1, с.242], Ом:

  • R1 = 0,5*(R1-2 + R1-3 — R2-3) = 0,5*(1,07 + 3,1 – 3,1) = 0,535 Ом
  • R2 = 0,5*(R2-3+ R1-2 — R1-3) = 0,5*(3,1 + 1,07 – 3,1) = 0,535 Ом
  • R3 = 0,5*(R1-3 + R2-3 — R1-2) = 0,5*(3,1 + 3,1 – 1,07) = 2,565 Ом

Как видно из подсчета, активные сопротивления обмоток автотрансформатора незначительны по сравнению с реактивными. Из-за этого на практике активные сопротивления обмоток обычно не учитываются.

1. Электрические сети энергетических систем. В.А. Боровиков. 1977 г.

Источник

Типы трансформаторов и их параметры

Предельная единичная мощность трансформаторов ограничивается массой, размерами, условиями транспортировки.

Трехфазные трансформаторы на напряжение 220 кВ изготовляют мощностью до 1000 МВА, на 330 кВ — 1250 МВА, на 500 кВ — 1000 МВА.

Однофазные трансформаторы применяются, если невозможно изготовление трехфазных трансформаторов необходимой мощности или затруднена их транспортировка. Наибольшая мощность группы однофазных трансформаторов напряжением 500 кВ составляет 3×533 МВА, напряжением 750 кВ — 3×417 МВА, напряжением 1150 кВ — 3×667 МВА.

По количеству обмоток различного напряжения на каждую фазу трансформаторы разделяются на двухобмоточные и трехобмоточные. Кроме того, обмотки одного и того же напряжения, обычно низшего, могут состоять из двух и более параллельных ветвей, изолированных друг от друга и от заземленных частей. Такие трансформаторы называют трансформаторами с расщепленными обмотками. Обмотки высшего, среднего и низшего напряжения принято сокращенно обозначать соответственно ВН, СН, НН.

Трансформаторы с расщепленными обмотками НН обеспечивают возможность присоединения нескольких генераторов к одному повышающему трансформатору. Такие укрупненные энергоблоки позволяют упростить схему распределительного устройства (РУ) 330—500 кВ. Трансформаторы с расщепленной обмоткой НН получили широкое распространение в схемах питания собственных нужд крупных ТЭС с блоками 200—1200 МВт, а также на понижающих подстанциях с целью ограничения токов КЗ.

К основным параметрам трансформатора относятся: номинальные мощность, напряжение, ток; напряжение КЗ: ток холостого хода; потери холостого хода и КЗ.

Номинальной мощностью трансформатора называется указанное в заводском паспорте значение полной мощности, на которую непрерывно может быть нагружен трансформатор в номинальных условиях места установки и охлаждающей среды при номинальных частоте и напряжении.

Читайте также:  Дмрв 116 какое напряжение

Для трансформаторов общего назначения, установленных на открытом воздухе и имеющих естественное масляное охлаждение без обдува и с обдувом, за номинальные условия охлаждения принимают естественно меняющуюся температуру наружного воздуха (для климатического исполнения У: среднесуточная не более 30°С, среднегодовая не более 20°С), а для трансформаторов с масляно-водяным охлаждением температура воды у входа в охладитель принимается не более 25°С (ГОСТ 11677—85).

Номинальная мощность для двухобмоточного трансформатора — это мощность каждой из его обмоток.

Трехобмоточные трансформаторы могут быть выполнены с обмотками как одинаковой, так и разной мощности. В последнем случае за номинальную принимается наибольшая из номинальных мощностей отдельных обмоток трансформатора.

За номинальную мощность автотрансформатора принимается номинальная мощность каждой из сторон, имеющих между собой автотрансформаторную связь («проходная мощность»).

Трансформаторы устанавливают не только на открытом воздухе, но и в закрытых неотапливаемых помещениях с естественной вентиляцией. В этом случае трансформаторы могут быть непрерывно нагружены на номинальную мощность, но при этом срок службы трансформатора несколько снижается из-за худших условий охлаждения.

Номинальные напряжения обмоток — это напряжения первичной и вторичной обмоток при холостом ходе трансформатора.

Для трехфазного трансформатора — это его линейное (междуфазное) напряжение. Для однофазного трансформатора, предназначенного для включения в трехфазную группу, соединенную в звезду, — это

.

При работе трансформатора под нагрузкой и подведении к зажимам его первичной обмотки номинального напряжения на вторичной обмотке напряжение меньше номинального на величину потери напряжения в трансформаторе. Коэффициент трансформации трансформатора n определяется отношением номинальных напряжений обмоток высшего и низшего напряжений

.

В трехобмоточных трансформаторах определяется коэффициент трансформации каждой пары обмоток: ВН и НН; ВН и СН; СН и НН.

Номинальными токами трансформатора называются указанные в заводском паспорте значения токов в обмотках, при которых допускается длительная нормальная работа трансформатора.

Номинальный ток любой обмотки трансформатора определяют по его номинальной мощности и номинальному напряжению.

Напряжение короткого замыкания uк — это напряжение, при подведении которого к одной из обмоток трансформатора при замкнутой накоротко другой обмотке в ней проходит ток, равный номинальному.

Напряжение КЗ определяют по падению напряжения в трансформаторе, оно характеризует полное сопротивление обмоток трансформатора.

В трехобмоточных трансформаторах и автотрансформаторах напряжение КЗ определяется для любой пары его обмоток при разомкнутой третьей обмотке. Таким образом, в каталогах приводятся три значения напряжения КЗ: uк ВН-НН, uк ВН-СН, uк СН-НН.

Поскольку индуктивное сопротивление обмоток значительно выше активного (у небольших трансформаторов в 2—3 раза, а у крупных в 15 — 20 раз), то uк в основном зависит от реактивного сопротивления, т.е. взаимного расположения обмоток, ширины канала между ними, высоты обмоток.

Величина uк регламентируется ГОСТ в зависимости от напряжения и мощности трансформаторов. Чем больше высшее напряжение и мощность трансформатора, тем больше напряжение КЗ. Так, трансформатор мощностью 630 кВА с высшим напряжением 10 кВ имеет uк = 5,5%, с высшим напряжением 35 кВ — uк = 6,5%; трансформатор мощностью 80000 кВА с высшим напряжением 35 кВ имеет uк = 9%, а с высшим напряжением 110 кВ — uк = 10,5%.

Увеличивая значение uк, можно уменьшить токи КЗ на вторичной стороне трансформатора, но при этом значительно увеличивается потребляемая реактивная мощность и увеличивается стоимость трансформаторов. Если трансформатор 110 кВ мощностью 25 MBА выполнить с uк = 20% вместо 10%, то расчетные затраты на него возрастут на 15,7%, а потребляемая реактивная мощность возрастет вдвое (с 2,5 до 5,0 Мвар).

Трехобмоточные трансформаторы могут иметь два исполнения по значению uк в зависимости от взаимного расположения обмоток.

Если обмотка НН расположена у стержня магнитопровода, обмотка ВН — снаружи, а обмотка СН — между ними, то наибольшее значение имеет uк ВН-НН, а меньшее значение — uк ВН-СН. В этом случае потери напряжения по отношению к выводам СН уменьшатся, а ток КЗ в сети НН будет ограничен благодаря повышенному значению uк ВН-НН

Если обмотка СН расположена у стержня магнитопровода, обмотка ВН — снаружи, а обмотка НН — между ними, то наибольшее значение имеет uк ВН-СН, а меньшее — uк ВН-НН.

Значение uк СН-НН останется одинаковым в обоих исполнениях.

Ток холостого хода Iх характеризует активные и реактивные потери в стали и зависит от магнитных свойств стали, конструкции и качества сборки магнитопровода и от магнитной индукции. Ток холостого хода выражается в процентах номинального тока трансформатора. В современных трансформаторах с холоднокатаной сталью токи холостого хода имеют небольшие значения.

Читайте также:  Градиент напряжения направлен в сторону источника

Потери холостого хода Pх и короткого замыкания Pк определяют экономичность работы трансформатора.

Потери холостого хода состоят из потерь стали на перемагничивание и вихревые токи. Для их уменьшения применяются электротехническая сталь с малым содержанием углерода и специальными присадками, холоднокатаная сталь толщиной 0,3 мм марок 3405, 3406 и других с жаростойким изоляционным покрытием. В справочниках и каталогах приводятся значения Pх для уровней А и Б. Уровень А относится к трансформаторам, изготовленным из электротехнической стали с удельными потерями не более 0,9 Вт/кг, уровень Б — с удельными потерями не более 1,1 Вт/кг (при B = 1,5 Тл, f = 50 Гц).

Потери короткого замыкания состоят из потерь в обмотках при протекании по ним токов нагрузки и добавочных потерь в обмотках и конструкциях трансформатора. Добавочные потери вызваны магнитными полями рассеяния, создающими вихревые токи в крайних витках обмотки и конструкциях трансформатора (стенки бака, ярмовые балки и др.). Для их снижения обмотки выполняются многожильным транспонированным проводом, а стенки бака экранируются магнитными шунтами.

В современных конструкциях трансформаторов потери значительно снижены. Например, в трансформаторе мощностью 250000 кВА при U = 110 кВ
(Pх = 200 кВт, Pк = 790 кВт), работающем круглый год (Tmax = 6300 ч), потери электроэнергии составят 0,43% электроэнергии, пропущенной через трансформатор. Чем меньше мощность трансформатора, тем больше относительные потери в нем.

В сетях энергосистем установлено большое количество трансформаторов малой и средней мощности, поэтому общие потери электроэнергии во всех трансформаторах страны значительны и очень важно для экономии электроэнергии совершенствовать конструкции трансформаторов с целью дальнейшего уменьшения значений Pх и Pк.

Силовые трансформаторы ТМ-СЭЩ, ТМН-СЭЩ Электрощит-Самара

Источник

Что такое автотрансформатор?

С развитием энергетики и связанных с ней электрических сетей для передачи переменного тока, как источника питания для различных устройств, возникла необходимость в приборах, изменяющих величину напряжения. Такими универсальными электромагнитными устройствами, позволяющими повышать или понижать исходное напряжение до требуемой величины, стали трансформаторы.

Со временем, для обеспечения стабильной работы электроприборов, преимущественно бытового назначения, возникла необходимость плавного регулирования напряжения. Это стало возможным после того, как был изобретён автотрансформатор – устройство, в котором вторичная обмотка является составной частью первичных витков.

Что такое автотрансформатор?

Из школьного курса физики известно, что простейший трансформатор состоит из двух катушек, намотанных на железные сердечники. Магнитным полем переменного тока, запитанного через выводы первичных обмоток, возбуждаются электромагнитные колебания во второй катушке, с аналогичной частотой.

При подключении нагрузки, к выводам рабочей обмотки, она образует вторичную цепь, в которой возникает электрический ток. При этом напряжение в образованной электрической цепи связано прямо пропорциональной зависимостью с количеством витков обмоток. То есть: U1/U2 = w1/w2 , где U1, U2 – напряжения, а w1, w2 – количество полных витков в соответствующих катушках.

Рисунок 1. Схема обычного трансформатора и автотрансформатора

Немного по-другому устроен автотрансформатор. Он, по сути, состоит из одной обмотки, от которой сделано один или несколько отводов, образующих вторичные витки. При этом все обмотки образуют между собой не только электрическую, но и магнитную связь. Поэтому, при подаче электрической энергии на вход автотрансформатора, возникает магнитный поток, под действием которого происходит индукция ЭДС в обмотке нагрузки. Величина электродвижущей силы связана прямой пропорциональностью с числом витков, образующих нагрузочную обмотку, с которой снимается напряжение.

Таким образом, формула, приведённая выше, справедлива и для автотрансформатора.

Из основной обмотки можно отводить большое количество выводов, что позволяет создавать комбинации для снятия различных по величине напряжений. Это очень удобно на практике, так как понижение напряжения часто требуется для питания нескольких блоков электроприборов, использующих различные напряжения.

Отличие автотрансформатора от обычного трансформатора

Как видно из описания автотрансформатора, главное его отличие от обычного трансформатора – отсутствие второй катушки с сердечником. Роль вторичных обмоток выполняют отдельные группы витков, имеющих гальваническую связь. Эти группы не требуют отдельной электрической изоляции.

У такого устройства есть определённые преимущества:

  • сокращён расход цветных металлов, используемых на изготовление такого оборудования;
  • передача энергии осуществляется путём воздействия электромагнитного поля входного тока, и благодаря электрической связи между обмотками. Следовательно, потеря энергии оказывается ниже, поэтому у автотрансформаторов наблюдаются более высокие КПД;
  • малый вес и компактные габариты.
Читайте также:  Устройства защиты от скачков напряжения узм 3 63к

Несмотря на конструкционные различия, принцип работы этих двух типов изделий остаётся неизменным. Выбор типа трансформатора зависит, прежде всего, от целей и задач, которые приходится решать в электротехнике.

Типы автотрансформаторов

В зависимости от того в каких сетях (однофазных или трёхфазных) требуется изменить напряжение, используют соответствующий тип автотрансформаторов. Они бывают однофазными либо трёхфазными. Для трансформации тока с трёх фаз можно установить три автотрансформатора, предназначенных для работы в однофазных сетях, соединив их выводы треугольником или звёздочкой.

Схема соединений обмоток трансформатора

Существуют типы лабораторных автотрансформаторов, позволяющих плавно изменять значения по выходному напряжению. Такой эффект достигается путём перемещения ползунка по поверхности открытой части однослойной обмотки, наподобие принципа работы реостата. Витки проволоки наносятся вокруг кольцеобразного ферромагнитного сердечника, по окружности которого и перемещается контактный ползунок.

Автотрансформаторы подобного типа массово применялись на просторах СССР в эпоху массового распространения ламповых телевизоров. Тогда напряжение сетей было нестабильно, что вызывало искажения изображений. Пользователям этой несовершенной техники приходилось время от времени подстраивать напряжение до уровня 220 В.

До появления стабилизаторов напряжения, единственной возможностью достичь оптимальных параметров питания для бытовой техники того времени, было применение ЛАТР. Данный тип автотрансформаторов используется и сегодня в различных лабораториях и учебных заведениях. С их помощью осуществляется наладка электротехнического оборудования, тестируется аппаратура с высокой чувствительностью и выполняются другие задачи.

В специальном оборудовании, где нагрузки незначительны, применяются модели автотрансформаторов ДАТР.

Автотрансформатор ЛАТР

Существуют также автотрансформаторы:

  • малой мощности, для работы в цепях до 1 кВ;
  • среднемощные агрегаты (больше 1 кВ);
  • высоковольтные автотрансформаторы.

Следует заметить, что с целью безопасности ограничено использование автотрансформаторов в качестве силовых трансформаторов, для снижения до 380 В напряжений, превышающих 6 кВ. Это связано с наличием гальванической связи между обмотками, что не безопасно для конечного потребителя. При авариях не исключено, что высокое напряжение попадёт на запитанное оборудование, что чревато непредсказуемыми последствиями. В этом кроется основной недостаток автотрансформаторов.

Обозначение на схемах

Отличить автотрансформатор на схеме от изображения обычного трансформатора очень легко. Признаком является наличие единственной обмотки связанной с одним сердечником, обозначенным жирной линией на схемах. По одну или по обе стороны этой лини схематически изображены обмотки, но в автотрансформаторе все они соединены друг с другом. Если на схеме витки изображены автономно, то речь идёт об обычном трансформаторе (см. рисунок 1).

Устройство и конструктивные особенности

Как было отмечено выше, автотрансформатор состоит из одной катушки. Её наматывают на обычный или на тороидальный сердечник.

В силу конструктивных особенностей у него отсутствуют гальванические развязки между цепями, что может привести к поражению высоковольтным током. Поэтому понижающий автотрансформатор, ввиду его повышенной опасности, требует принятия дополнительных мер по защите от поражения электротоком. Работа с ним допускается при условии строгого соблюдения правил безопасности.

Принцип действия автотрансформатора

Несмотря на особенности строения обмоточной части агрегата, его принцип действия очень напоминает работу обычного трансформатора. По такому же принципу во время циркуляции переменного тока возникает магнитный поток в сердечнике. Его действие на обмотку характеризуется появлением на каждом отдельном витке равновеликой электродвижущей силы. Суммарная ЭДС на отрезке обмотки равна сумме величин токов всех отдельно взятых витков.

Особенностью является то, что по обмотке циркулирует ещё и первичный ток, который оказывается в противофазе к индукционному потоку. Результирующие значения этих токов на участке обмотки, предназначенной для потребителя, получаются меньшими (для понижающего тр.) чем параметры поступающего электричества.

Схема понижающего автотрансформатора

Соотношение величин ЭДС выражается формулой: E1/E2 = w1/w2 = k , где E – ЭДС, w – количество витков, k – коэффициент трансформации.

Учитывая то, что падение напряжений в обмотках трансформатора невелико – его можно не учитывать. В таком случае равенства: U1 = E1; U2 = E2 можно считать справедливыми. Таким образом, приведённая выше формула приобретает вид: U1/U2 = w1/w2 = k, то есть, соотношение напряжений к числу витков такое же, как и для обычного трансформатора.

Не вдаваясь в подробности, заметим, что отношение силы тока верхней катушки к току нагрузки, как и для обычного трансформатора, выражается формулой: I1/I2 = w2/w1 = 1/k. Отсюда следует, что поскольку в понижающем трансформаторе w2

Источник

Adblock
detector