Меню

Для регулирования напряжения в системе используют

Для регулирования напряжения в системе используют

Регулирование напряжения в электрических сетях сложно осуществлять, изменяя:
а) напряжение генераторов электростанций;
б) коэффициент трансформации трансформаторов и автотрансформаторов;
в) параметры питающей сети;
г) величину реактивной мощности, протекающей по сети. Применением перечисленных способов обеспечивается централизованное регулирование напряжения, однако последние три из них могут быть применены и для местного регулирования.

Регулирование напряжений в сетях генераторами электрических станций.


Регулирование напряжения изменением коэффициента трансформации трансформаторов, изменением параметров сети, изменением величины реактивной мощности.


Рис.1. Схема регулирования напряжения трансформатора с РПН (для одной фазы)
Городские и сельские распределительные сети напряжением б—10 кВ, как правило, оборудованы трансформаторами небольшой мощности (до 400—630 кВ А), у которых коэффициент трансформации в пределах ±5% изменяется переключением ответвлений обмотки ВН при отключенном от сети трансформаторе, т. е. без возбуждения трансформатора (ПБВ). Поэтому коэффициент трансформации этих трансформаторов изменяют только либо при изменении схемы электроснабжения, либо при переходе от сезонных максимальных нагрузок к минимальным и наоборот, т. е. осуществляется сезонное регулирование. Суточное регулирование напряжения в этих сетях возлагается на ЦП. Надлежащий коэффициент трансформации на длительный сезонный период выбирают, исходя из уровня напряжения на шинах ЦП и потери напряжения в распределительной сети.
Для обеспечения централизованного суточного регулирования напряжения на подстанциях, питающих распределительные сети, устанавливают трансформаторы с РПН, переключение ответвлений у которых производится без перерыва электроснабжения потребителей. Трансформаторы снабжаются аппаратурой автоматического регулирования — регуляторами напряжения, которые входят в комплектную поставку.
Встроенные регулировочные устройства в трансформаторах напряжением 35—330 кВ размещаются в нейтрали обмоток ВН. Диапазон регулирования напряжения ± 12% или ±16% номинального напряжения, ступенями по 1,5 или 1,78%. Трехобмоточные трансформаторы 110 и 220 кВ изготовляются с РПН только на обмотке ВН, а обмотка СН имеет ответвления для изменения коэффициента трансформации ±2 — 2,5%, переключаемые без возбуждения трансформатора (ПБВ)
В качестве примера на рис.1 приведена схема регулирования напряжения для трансформатора 110 кВ с диапазоном регулирования ±16% номинального напряжения.
При увеличении коэффициента трансформации переключения будут идти в обратном порядке.
Трехобмоточные автотрансформаторы 220—330 кВ выпускаются со встроенными устройствами РПН для регулирования напряжения на стороне СН в линии. Диапазон регулирования ±12% ступенями не более 2% UН.На рис.2 приведена схема регулирования для одной фазы трехфазного автотрансформатора 330/110 кВ.

Рис.2. Схемы регулирования напряжения автотрансформаторов 220— 330/110 кВ
где ПА —переключатель ответвлений с активными сопротивлениями R, R’; И1, И2 — избиратели ступеней.

Изменение коэффициента трансформации между ВН и СН переключением ответвлений в линии СН не изменяет соотношения напряжений между обмотками ВН и НН. Поэтому автотрансформаторы такой конструкции имеют большие эксплуатационные преимущества перед автотрансформаторами с регулированием напряжения в нейтрали общей обмотки. В последнем случае, как известно, при переключении ответвлений происходит одновременное изменение числа витков обмоток ВН и СН, что приводит к изменению соотношения напряжений между обмотками ВН и НН: при увеличении напряжения на обмотке СН напряжение на обмотке НН уменьшается и, наоборот, при снижении напряжения обмотки СН напряжение обмотки НН увеличивается. Это приводит к невозможности присоединения нагрузки к обмотке НН без установки последовательно с ней линейного регулировочного автотрансформатора даже при совпадении графиков нагрузок на обмотках СН и НН.
Линейные регулировочные автотрансформаторы мощностью 16—100 MB -А напряжением 6—35 кВ, а также 63—125 MB-A 110 кВ предназначаются для установки последовательно с нерегулируемыми обмотками трансформаторов, а также непосредственно в линиях электропередачи.
На рис. 103 дана схема одной фазы линейного трехфазного регулировочного автотрансформатора 10—35 кВ типа ЛТДН с реверсированием регулировочной обмотки. Диапазон регулирования линейных автотрансформаторов ±15% UН.

Рис.3. Схема одной фазы линейного регулировочного автотрансформатора типа ЛТДН
В положении, данном на рис.3, отрегулированное напряжение выше подведенного. Ток, питающий обмотку возбуждения последовательного трансформатора, проходит через ветви реактора Р в противоположных направлениях, вследствие чего результирующий магнитный потока реакторе очень мал и его сопротивление незначительно.

Регулирование напряжения в сетях изменением параметров сети


Из формулы видно, что изменением величины Хс (например, шунтированием конденсаторов при сниженных нагрузках) можно осуществлять ступенчатое регулирование напряжения сети.
В линиях дальних передач продольную компенсацию используют для повышения их пропускной способности. Число конденсаторов в батарее для продольной компенсации определяется требуемым уровнем напряжения на приемной подстанции и максимальной нагрузкой линии. В электропередачах высокого напряжения обычно компенсируют не свыше 40—50% индуктивности линии, так как большая степень компенсации может привести к ложным действиям релейной защиты, а при известных условиях и к колебательному режиму (самораскачиванию) синхронных генераторов.

Источник

Устройства для регулирования напряжения в сетях промышленных предприятий

Для выбора средств регулирования напряжения и их размещения в системе электроснабжения необходимо выявить уровни напряжения в различных ее точках с учетом мощностей, передаваемых по ее отдельным участкам, технических параметров этих участков, сечения линий, мощностей трансформаторов, типов реакторов и т. д. При определении средств регулирования исходят не только из технических, но и из экономических критериев.

Читайте также:  Как снять напряжение сзади шеи

Основными техническими средствами регулирования напряжения в системах электроснабжения промышленных предприятий являются:

силовые трансформаторы с устройствами регулирования под нагрузкой (РПН),

вольтодобавочные трансформаторы с регулированием под нагрузкой,

конденсаторные батареи продольного и поперечного включения, синхронные двигатели с автоматическим регулированием тока вбзбуждения,

статические источники реактивной мощности,

генераторы местных электростанций, имеющихся на большинстве крупных промышленных предприятий.

На рис. 1 показана схема централизованного регулирования напряжения в распределительной сети промышленного предприятия, оно осуществляется трансформатором с устройством для автоматического регулирования напряжения под нагрузкой . Трансформатор установлен на главной понизительной подстанции (ГПП) предприятия. Трансформаторы, имеющие устройства РПН, комплектуются блоками для автоматического регулирования напряжения под нагрузкой (АРН).

Рис. 1. Схема централизованного регулирования напряжения в распределительной сети промышленного предприятия

Централизованное регулирование напряжения в ряде случаев оказывается недостаточным. Поэтому для электроприемников, чувствительных к отклонениям напряжения, в распределительной сети устанавливают вольтодобавочные трансформаторы или индивидуальные стабилизаторы напряжения .

Цеховые трансформаторы распределительных сетей, трансформаторы Т1 — ТЗ (см. рис. 1), как правило, не имеют устройств для регулирования напряжения под нагрузкой и оснащаются устройствами регулирования без возбуждения типа ПБВ, позволяющими переключать ответвления силового трансформатора при отключении его от сети. Указанные устройства используются обычно для сезонного регулирования напряжения.

Важным элементом, улучшающим режим напряжения в сети промышленного предприятия, являются устройства компенсации реактивной мощности — конденсаторные батареи поперечного и продольного включения. Установка последовательно включенных конденсаторов (УПК) дает возможность снизить индуктивное сопротивление и потерю напряжения в линии. Для УПК отношение емкостного сопротивления конденсаторов хк к индуктивному сопротивлению линии хл называется процентом компенсации : С= (хк/хл) х 100 [%].

Устройства УПК осуществляют параметрическое, зависимое от величины и фазы тока нагрузки, регулирование напряжения в сети. На практике прибегают лишь к частичной компенсации реактивного сопротивления (С

Полная компенсация при резком изменении нагрузки и в аварийных режимах может вызвать перенапряжения. В связи с этим при значительных величинах С устройства УПК должны быть оснащены коммутаторами, шунтирующими часть батарей.

Для систем электроснабжения разрабатываются УПК с шунтировкой части секций батареи тиристорными ключами, что расширит область применения УПК в системах электроснабжения промышленных предприятий.

Конденсаторы, подключаемые параллельно сети, генерируют х реактивную мощность и одновременно напряжение, так как уменьшают потери в сети. Реактивная мощность, генерируемая подобными батареями — устройствами поперечной компенсации, Qк = U 2 2 π fC. Таким образом, реактивная мощность, отдаваемая батареей поперечно включенных конденсаторов, в значительной мере зависит от величины напряжения на ее зажимах.

При выборе мощности конденсаторов исходят из необходимости обеспечения соответствующего нормам отклонения напряжения при расчетной величине активной нагрузки, что определяется разностью потерь линии до и после включения конденсаторов:

где P1, Q2, Р2, Q2 — передаваемые по линии активные и реактивные мощности до и после установки конденсаторов, r с, хс — сопротивления сети.

Учитывая неизменность передаваемой по линии активной мощности (Р 1 = Р2), имеем:

Регулирующий эффект от подключения параллельно сети конденсаторной батареи пропорционален хс, т. е. повышение напряжения у потребителя в конце линии больше, чем в ее начале.

Основным средством регулирования напряжения в распределительных сетях промышленных предприятий являются трансформаторы с регулированием под нагрузкой . Регулировочные ответвления таких трансформаторов располагаются на обмотке высшего напряжения. Переключатель размещают обычно в общем баке с магнитопроводом и приводят в действие электродвигателем. Приводной механизм оснащен конечными выключателями, размыкающими электрическую цепь питания двигателя при достижении переключателем крайнего положения.

На рис. 2, а представлена схема многоступенчатого переключателя типа РНТ-9, имеющего восемь позиций и глубину регулирования ±10 %. Переход между ступенями осуществляется посредством шунтирования смежных ступеней на реактор.

Рис. 2. Переключающие устройства силовых трансформаторов: а — переключатель типа РНТ, Р — реактор, РО — регулировочная часть обмотки, ПК — подвижные контакты переключателя, б — переключатель типа РНТА, ТС — токоограничивающее сопротивление, ПГР переключатель грубой регулировки, ПТР — переключатель тонкой регулировки

Отечественная промышленность выпускает также переключатели серии РНТА с активным токоограничивающим сопротивлением, имеющие более мелкие ступени регулирования — по 1,5 %. Показанный на рис. 2, б переключатель РНТА имеет семь ступеней тонкой регулировки (ПТР) и ступень грубой регулировки (ПГР).

В настоящее время электротехнической промышленностью также выпускаются статические переключатели отпаек силовых трансформаторов , позволяющие производить быстродействующее регулирование напряжения в сетях промышленных предприятий.

Читайте также:  Как найти напряжения в бетоне

На рис. 3 представлена одна из осваиваемых электротехнической промышленностью систем переключения отпаек силового трансформатора — переключатель «через резистор».

На рисунке показана регулировочная зона трансформатора, имеющая восемь отпаек, соединенных с выходным его зажимом посредством биполярных групп VS1—VS8. Кроме этих групп, имеется биполярная тиристорная переключающая группа, соединенная последовательно с токоограничивающим резистором R.

Рис. 3. Статический переключатель отпаек с токоограничивающим резистором

Принцип работы переключателя состоит в следующем: при переходе с отпайки на отпайку во избежание короткого замыкания секции или разрыва цепи полностью гасится выходящая из работы биполярная группа путем перевода тока на отпайку с резистором, а затем ток переводится на необходимую отпайку. Например, при переходе с отпайки VS3 на VS4 происходит следующий цикл: включается VS.

Ток КЗ секции ограничивается токоограничивающим резистором R, гасятся тиристоры VS3, включается VS4, отключаются тиристоры VS. Аналогично выполняются другие коммутации. Биполярные тиристорные группы VS10 и VS11 производят реверсирование регулировочной зоны. Переключатель имеет усиленный блок тиристоров VS9, осуществляющий нулевую позицию регулятора.

Особенностью работы переключателя является наличие блока автоматического управления (БАУ), выдающего команды управления на VS9 в интервале включения трансформатора на холостой ход. БАУ работает в течение некоторого времени, необходимого для того, чтобы источники, питающие тиристорные группы VS1—VS11 и VS, вышли на режим, поскольку источником питания системы управления переключателя служит сам трансформатор.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Способы и средства регулирования напряжения у электроприемников

Для обеспечения некоторых заранее заданных значений отклонений напряжений у электроприемников применяются следующие способы:

1. Регулирование напряжения на шинах центра питания;

2. Изменение величины потери напряжения в элементах сети;

3. Изменение величины передаваемой реактивной мощности.

4. Изменение коэффициента трансформации трансформаторов.

Регулирование напряжения на шинах центра питания

Регулирование напряжения на центре питания (ЦП) приводит к изменениям напряжения во всей присоединенной к ЦП сети и называется централизованным, остальные способы регулирования изменяют напряжение на определенном участке и называются местными способами регулирования напряжения. В качестве ЦП городских сетей могут рассматриваться шины генераторного напряжения ТЭЦ или шины низшего напряжения районных подстанций или подстанций глубокого ввода. Отсюда вытекают и способы регулирования напряжения.

На генераторном напряжении оно производится автоматически изменением тока возбуждения генераторов. Отклонения от номинального напряжения допускаются в пределах ±5%. На стороне низшего напряжения районных подстанций регулирование осуществляется при помощи трансформаторов с регулированием под нагрузкой (РПН), линейных регуляторов (ЛР) и синхронных компенсаторов (СК).

При различных требованиях, предъявляемых потребителями, устройства для регулирования могут применяться совместно. Такие системы носят название централизованно-группового регулирования напряжения.

На шинах ЦП, как правило, осуществляется встречное регулирование, т. е. такое регулирование, при котором в часы наибольших нагрузок, когда потери напряжения в сети тоже наибольшие, напряжение повышается, а в часы минимальных нагрузок — понижается.

Трансформаторы с РПН позволяют осуществить довольно большой диапазон регулирования до ±10 — 12%, а в некоторых случаях (трансформаторы типа ТДН с высшим напряжением 110 кВ до 16% при 9 ступенях регулирования. Существуют конструкции для плавного регулирования под нагрузкой, но они пока дороги и применяются в исключительных случаях, при особенно повышенных требованиях.

Изменение величины потери напряжения в элементах сети

Изменение потери напряжения в элементах сети может осуществляться изменением сопротивлений цепи например, изменением сечении проводов и кабелей, отключением или включением числа параллельно включенных линий и трансформаторов (смотрите — Параллельная работа трансформаторов).

Выбор сечений проводов, как известно, производится из условий нагрева, экономической плотности тока и по допустимой потере напряжения, а также по условиям механической прочности. Однако расчет сети, особенно высокого напряжения по допустимой потере напряжения, не всегда обеспечивает нормируемые отклонения напряжения у электроприемников. Поэтому в ПУЭ нормируются не потери, а отклонения напряжения.

Реактивное сопротивление сети можно изменять при последовательном включении конденсаторов (продольная емкостная компенсация).

Продольной емкостной компенсацией называется, способ регулирования напряжения, при котором последовательно в рассечку каждой фазы линии включаются статические конденсаторы для получения надбавок напряжения.

Известно, что суммарное реактивное сопротивление электрической цепи определяется разностью между индуктивным и емкостным сопротивлениями.

Изменяя величину емкости включаемых конденсаторов, а следовательно, и величину емкостного сопротивления, можно получить различные величины потери напряжения в линии, что равнозначно соответствующей надбавке напряжения на зажимах электроприемников.

Последовательное включение конденсаторов в сеть целесообразно при невысоких коэффициентах мощности в воздушных сетях, в которых потеря напряжения в основном определяется ее реактивной составляющей.

Читайте также:  Автоматический выключатель для постоянного напряжения

Продольная компенсация особенно эффективна в сетях с резкими колебаниями нагрузки, так как ее действие совершенно автоматическое и зависит от величины протекающего тока.

Следует также учитывать, что продольная емкостная компенсация приводит к увеличению токов короткого замыкания в сети и может быть причиной резонансных перенапряжений, что требует специальной проверки.

Для целей продольной компенсации нет необходимости устанавливать конденсаторы, рассчитанные на полное рабочее напряжение сети, однако они должны иметь надежную изоляцию от земли.

Изменение величины передаваемой реактивной мощности

Реактивная мощность может вырабатываться не только генераторами электростанций, но и синхронными компенсаторами и перевозбужденными синхронными электродвигателями, а также статическими конденсаторами, включаемыми в сеть параллельно (поперечная компенсация).

Мощность компенсационных устройств, которые должны быть установлены в сети, определяется балансом реактивной мощности в данном узле энергосистемы на основе технико-экономических расчетов.

Синхронные двигатели и батареи конденсаторов, являясь источниками реактивной мощности, могут оказать существенное влияние на режим напряжения в электрической сети. При этом автоматическое регулирование напряжения и сети синхронными двигателями может осуществляться плавно.

В качестве источников реактивной мощности на крупных районных подстанциях часто применяются специальные синхронные двигатели облегченной конструкции, работающие в режиме холостого хода. Такие двигатели называются синхронными компенсаторами.

Наибольшее распространение и промышленности имеет серия электродвигателей СК, изготовляемых на номинальное напряжение 380 — 660 В, рассчитанных на нормальную работу при опережающем коэффициенте мощности, равном 0,8.

Мощные синхронные компенсаторы устанавливаются, как правило, на районных подстанциях, а синхронные двигатели чаще применяются для различных приводов в промышленности (мощные насосы, компрессоры).

Наличие относительно больших потерь энергии в синхронных двигателях затрудняет их применение в сетях с небольшими нагрузками. Как показывают расчеты, в этом случае более целесообразны батареи статических конденсаторов. Принципиально влияние конденсаторов поперечной компенсации на уровни напряжения в сети аналогично влиянию перевозбужденных синхронных двигателей.

Более подробно о конденсаторах сказано в статье Статические конденсаторы для компенсации реактивной мощности, где они рассматриваются с точки зрения повышения коэффициента мощности.

Существует ряд схем автоматизации компенсационных батарей. Такие устройства выпускаются промышленностью в комплекте с конденсаторами. Одна из таких схем показана здесь: Схемы включения конденсаторных батарей

Изменение коэффициентов трансформации трансформаторов

Выпускаемые в настоящее время силовые трансформаторы напряжением до 35 кВ для установки в распределительных сетях снабжены переключателями ПБВ для переключения регулировочных ответвлений в первичной обмотке. Таких ответвлений обычно 4, кроме основного, что позволяет получить пять коэффициентов трансформации (надбавки напряжения от 0 до +10%, на основном ответвлении — +5%).

Перестановка ответвлений — наиболее дешевый способ регулирования, но он требует отключения трансформатора от сети, а это вызывает перерыв, хотя и кратковременный, в питании потребителей, поэтому он применяется только для сезонного регулировании напряжения, т. е. 1 — 2 раза в год перед летним и зимним сезонами.

Для выбора наивыгоднейшего коэффициента трансформации существует несколько расчетных и графических методов.

Рассмотрим здесь лишь один наиболее простой и наглядный. Порядок расчета следующий:

1. По ПУЭ принимают допустимые отклонения напряжения дли данного потребителя (или группы потребителей).

2. Приводят все сопротивления рассматриваемого участка цепи к одному (чаще к высокому) напряжению.

3. Зная напряжения в начале сети высшего напряжения, вычитают из него суммарную приведенную потерю напряжения до потребителя для требуемых режимов нагрузки.

В электрических сетях для централизованного и местного регулирований применяются силовые трансформаторы, снабженные устройством для регулирования напряжения под нагрузкой (РПН). Их преимущество заключается в том, что регулирование осуществляется без отключения трансформатора от сети. Существует большое количество схем с автоматическим и без автоматического управления.

Переход с одной ступени на другую осуществляется при дистанционном управлении при помощи электропривода без разрыва рабочего тока в цепи обмотки высшего напряжения. Это достигается закорачиванием на короткое время регулируемой секции токоограничивающим сопротивлением (дросселем).

Автоматические регуляторы весьма удобны и допускают до 30 переключений в сутки. Регуляторы отстраиваются таким образом, чтобы они имели так называемую зону нечувствительности, которая должна быть больше ступени регулирования на 20 — 40%. При этом они не должны реагировать на кратковременные изменения напряжения, вызванные удаленными короткими замыканиями, пусками крупных электродвигателей и т. д.

Схему подстанции целесообразно строить так, чтобы на один регулируемый трансформатор но возможности присоединялись потребители с однородными графиками нагрузок и примерно одинаковыми требованиями к качеству напряжения.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Adblock
detector