Меню

Для ступенчатого стержня определить величину напряжения в сечении

Построение эпюр при растяжении и сжатии: продольных сил и нормальных напряжений для ступенчатого стержня (бруса)

Автор: Константин Вавилов · Опубликовано 23.11.2017 · Обновлено 14.03.2021

Приветствую, друзья! Сегодня дебютирует наш курс – «сопромат для чайников», Вы находитесь на сайте проекта SoproMats, который связан с сопроматом и не только. На этой страничке будет выложен первый урок из заявленного экспресс курса, который связан с таким простейшим видом деформации как растяжение (сжатие). В частности, будем учиться строить эпюры для бруса (стержня), который загружен растягивающей и сжимающей силой. Как правило, такое домашнее задание, одним из первых, дают всем студентам, которые начинают знакомиться с сопроматом. После изучения материалов данного урока вы научитесь строить следующие эпюры: продольных сил и нормальных напряжений. Не пугайтесь мудреных названий, на самом деле все эти эпюры строятся очень просто. Что же давайте приступим к изучению!

Построение эпюры продольных сил

Так как это курс для чайников, я многие моменты буду упрощать и рассказывать только самое основное, чтобы написанное здесь, было понятно даже самому неподготовленному студенту — заочнику. Если вы хотите более детально изучить рассматриваемые здесь вопросы, то могу предложить Вам другие материалы нашего сайта. Например, что касается данного блока статьи, то у нас есть материалы про продольную силу, где представлено полное досье на данный внутренний силовой фактор: что эта за сила, зачем нужна и т.д. Но если Вам некогда залазить в эти дебри, и хотите по-быстрому освоить продольную силу, то оставайтесь здесь, сейчас покажу как строится первая эпюра!

Кстати, вот объект нашего сегодняшнего исследования:

Чтобы построить эпюру продольных сил, нужно разбить наш брус на несколько участков, на которых эта эпюра будет иметь постоянное значение. Конкретно, для продольной эпюры, границами участков служат те точки, где прикладываются силы. То бишь, для нашего примера, нужно рассмотреть всего 2 участка:

Важно! На эпюру продольных сил, никак не влияет форма бруса, в отличие от других эпюр, которые будем дальше рассчитывать и строить.

На первом участке сила F1 растягивает брус на величину 5кН, поэтому на этом участке, продольная сила будет положительной и равной:

Откладываем это значение на графике. Эпюры в сопромате, принято штриховать перпендикулярно нулевой линии, а также для продольных сил, на эпюрах проставляются знаки:

На втором же участке, сила F2 сжимает брус, тем самым в уравнение продольных сил, она пойдет с минусом:

Откладываем полученное значение на эпюре:

Вот так, достаточно просто, строится эта эпюра!

Построение эпюры нормальных напряжений

Переходим к эпюре нормальных напряжений. В отличие от продольных сил, нормальные напряжения зависят от формы бурса, а если точнее, то от площади его поперечных сечений и вычисляются они, по следующей формуле:

То бишь, чтобы найти нормальное напряжение в любом сечении бруса, нужно: продольную силу в этом сечении разделить на его площадь.

Для того чтобы построить эпюру нормальных напряжений, нужно рассчитать ее для любого сечения, каждого участка. В отличие, от продольной силы, здесь границами участков также служат места изменения геометрии бруса. Таким образом, для нашего подопытного бруса, нужно наметить три участка и вычислить напряжение, соответственно, 3 раза:

Зададим брусу на первом участке (I) площадь поперечного сечения A1=2 см 2 , а вторая ступень бруса, допустим, будет иметь площадь A2=4 см 2 (II, III участки). В вашей домашней задаче, эти величины будут даны по условию. Также в задачах, часто, просят определить эти площади из условия прочности, с учетом допустимого напряжения, обязательно сделаю статью про это.

Вычисляем напряжения на каждом участке:

По полученным значениям строим эпюру нормальных напряжений:

Вот так, достаточно просто можно построить эпюры для бруса, работающего на растяжение (сжатие). В рамках статьи, была рассмотрена достаточно простая расчетная схема, если Вы хотите развить свои навыки по построению эпюр, то приглашаю Вас на страничку про различные эпюры, где можно найти примеры расчета более сложных брусьев с распределенными нагрузками, где о каждой эпюре подготовлена отдельная статья.

Если Вам понравилась статья, расскажите о ней своим друзьям, подписывайтесь на наши социальные сети, где публикуется информация о новых статьях проекта. Также, там можно задать любой интересующий Вас вопрос о сопромате и не только.

Читайте также:  Стабилизатор напряжения выбрать совет

Источник

iSopromat.ru

Пример решения задачи на расчет нормальных напряжений в сечениях прямого ступенчатого стержня при продольном нагружении.

Задача

Рассчитать величину напряжений в стержне заданной формы, нагруженном продольными силами и построить их эпюру.

Пример решения

Предыдущие пункты решения задачи:

т.е. напряжения определяются отношением соответствующей величины внутренней силы к площади поперечного сечения на рассматриваемом участке стержня.

Площади поперечного сечения стержня:

В пределах участка стержня, где внутренняя сила и площадь постоянны, напряжения тоже будут одинаковы, при этом положительные (растягивающие) внутренние силы в сечениях вызывают действие положительных напряжений, и наоборот.

Величину и знаки внутренних сил примем с построенной эпюры N.

Расчет напряжений

По этим данным строим эпюру нормальных напряжений σ .

По эпюре видно, что все напряжения лежат в пределах допустимых значений, следовательно, поперечные размеры стержня были рассчитаны правильно и необходимая прочность обеспечена.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Источник

Задача № 1 Проверка прочности ступенчатого стержня при деформации растяжение и сжатие.

Задача № 1 Проверка прочности ступенчатого стержня при деформации растяжение и сжатие.…………………………………. 3
Задача № 2 Расчет оптимального сечения ступенчатого стержня при деформации растяжение и сжатие……………………………………………..8
Задача № 3 Расчет статически определимой стержневой системы, работающей на растяжение и сжатие………………………………………….12
Задача № 4 Расчет вала на прочность и жесткость…………………………. 15
Задача № 5 Расчет балки на прочность при плоском изгибе………………. 20
Задача №6 Расчет балки на прочность при плоском изгибе………………. 23
Задача № 7 Сравнение прочности балок различных сечений……………….27
Задача № 8 Расчет сжатого стержня на устойчивость……………………….29
Список литературы……………………………………………………………. 33

Задача № 2 Расчет оптимального сечения ступенчатого стержня при деформации растяжение и сжатие.

Задание:Определить оптимальный диаметр сечения круглого стержня на каждом участке по условию прочности. Определить продольные деформации, возникающие на каждом участке стержня. Стержень изготовлен из стали:

Е = 2*10 5 МПа; σТ = 240 МПа. Допускаемый коэффициент запаса статической прочности [n] выбрать самостоятельно ([n]= 1,2…1,8). Весом стержня пренебречь. Схема стержня приведена на рис. 2.

Исходные данные:F1=17 кН; F2=28 кН; F3=7кН; l1=130 см=1,3 м;

Решение:Для определения продольной силы используем метод сечений.

Эпюру продольных сил необходимо строим, руководствуясь правилом: продольная сила в любом сечении стержня равна алгебраической сумме проекций всех внешних сил, расположенных по одну сторону от сечения на ось стержня. Продольная сила считается положительной, если она соответствует деформации растяжения (направлена от сечения) и отрицательной, если она вызывает сжатие (направлена к сечению).

1.Разобьем стержень на отдельные участки, начиная от свободного конца. Границы участков определяются точками приложения внешних сил. Всего по длине стержня в данной задаче будет три участка. Проведя сечения и отбрасывая левые части стержня, можно определить продольные силы в его поперечных сечениях без вычисления опорных реакций в заделке.

1 участок (сечение 1-1) : NI = -F3 = -7 кН.

на первом участке осуществляется деформация сжатия.

на втором участке осуществляется деформация растяжения.

на третьем участке осуществляется деформация растяжения.

Таким образом, в заделке действует реакция равная N3 =38кН.

Эпюра продольных сил показана на рис.1. Эпюру продольных сил строим в масштабе = .

2. Допускаемое напряжение вычисляем по формуле: .

Допускаемые напряжения при сжатии и растяжении для пластичного материала, при условии, что коэффициент запаса n=1,8.

=240/1,8=133,3Мпа

3. Требуемая площадь сечения определяется из формулы условия прочности на растяжения.

Þ

Площадь круглого сечения А=

1 участок:

Принимаем d1=0,09м, А1=

2 участок:

Принимаем d2=0,015 м, А2=

3 участок:

Принимаем d1=0,02м, А3=

Удлинения (укорочения) части стержня определяем по формуле ,где – соответственно длина участка, внутреннее усилие, площадь поперечного сечения, Е–модуль упругости материала.

Укорочение 1 участка .

Удлинение 2 участка

Удлинение 3 участка .

В правом конце стержня заделка, перемещение в этом конце отсутствует. Поэтому построение эпюры смещения стержня необходимо строить, начиная с левого конца.

На третьем участке смещение изменяется от нуля до =7,87*10 -4 м;

на втором участке: от =7,87*10 -4 м до

=16,17*10 -4 м;

на первом участке: от 16,17*10 -4 м

до 7,87*10 -4 +8,3*10 -4 -3,55*10 -4 =12,62*10 -4 м.

Эпюры смещения строим в масштабе:

= .

Ответ: Полное удлинение стержня составило 12,62*10 -4 м.

Читайте также:  Ваз 2110 напряжение в электросети автомобиля слишком низкое

Задача № 3 Расчет статически определимой стержневой системы,

Задача № 4 Расчет вала на прочность и жесткость.

Задание:Определить диаметры ступенчатого вала из условия прочности и жесткости на кручение. Определить угол закручивания вала.

Вал изготовлен из стали: [Θ] = 1,75 *10 -2 рад/м, G = 8 *10 10 Па

Схема вала приведена на рис. 4.

Исходные данные: а=1,4м; b=0,6м, c=0,6м, М1 =360Н*м; М2 = 400Н*м;

1. Определение внутренних крутящих моментов по участкам.

Для определения знака крутящего момента примем следующее правило: если смотреть на отсеченную часть бруса со стороны внешней нормали к сечению, то момент сечении будет положителен в том случае, когда сумма внешних скручивавших моментов поворачивает отсеченную часть бруса по часовой стрелке, и отрицателен при повороте части бруса в противоположном направлении.

Неизвестный момент М5 в заделке найдем из уравнения равновесия для всего вала. Условно примем направление момента М5 за отрицательное. Тогда уравнение равновесия принимает вид

Из решения этого уравнения получим

Для построения эпюры крутящих моментов применяем метод сечений к каждому участку вала в отдельности (следует заметить, что построение эпюры крутящих моментов совершенно аналогично построению эпюры продольных сил). Крутящие моменты в сечениях определяются как алгебраические суммы внешних моментов, приложенных по одну сторону от сечения.

Определим крутящие моменты на каждом участке, проведя последовательно

сечения на четырехучастках вала и рассмотрим равновесие соответствующих

В сечении 1-1: .

В сечении 2-2: .

В сечении 3-3:

По полученным данным строим эпюру крутящих моментов, откладывая по вертикальной оси значения моментов. Отрицательные моменты откладываем вниз по осевой линии (рис. 4). Эпюру моментов строим в масштабе = .

2. По найденным значениям крутящих моментов из расчетов на прочность и жесткость в каждом сечении определим диаметры валов.

Расчет на прочность ведется по допускаемому напряжению при кручении

где –крутящий момент, действующий в сечении бруса;

–полярный момент сопротивления для круглого сечения, –диаметр вала. Из формулы выразим диаметр

По формуле определим диаметры для всех сечений.

Сечение 1-1: 0,0359м, принимаем d1=0,036м.

Сечение 2-2: 0,021м, принимаем d2=0,022м.

Сечение 3-3: 0,0303м, принимаем d1=0,032м.

Сечение 4-4: 0,0177м, принимаем d4=0,018м.

3. Расчет на жесткость ведется по допускаемому относительному углу закручиванию , где –полярный момент сопротивления круглого сечения.

В соответствии с формулой определим диаметр вала из условия жесткости

По формуле определим диаметры для всех участков.

Сечение 1-1: 0,0437м, принимаем d1=0,045м.

Сечение 2-2: 0,0292м, принимаем d2=0,03м.

Сечение 3-3: 0,0384м, принимаем d1=0,04м.

Сечение 4-4: 0,0257м, принимаем d4=0,026м.

4. В соответствии с расчетами на прочность и жесткость выбираем наибольшее значение диаметров для каждого участка. В результате получим следующие значения:

5. Абсолютные углы закручивания для каждого участка можно определить по формуле , где – длина участка.

Полярные моменты инерции для каждого сечения

Сечение 1-1: м 4 ;

Сечение 2-2: м 4 .

Сечение 3-3: м 4 ;

Сечение 4-4: м 4 .

Далее определим углы закручивания.

= -0,0218 рад – угол поворота сечения В относительно сечения А (или угол закручивания участка АВ).

= -0,0095 рад – угол поворота сечения С относительно сечения В (или угол закручивания участка ВС).

= 0,009 рад – угол поворота сечения D относительно сечения C (или угол закручивания участка CD).

=- 0,0233 рад – угол поворота сечения Е относительно сечения D (или угол закручивания участка DЕ).

Строим эпюру углов закручивания для всего вала (рис. 4). За начало координат выбран крайний левый конец бруса (сечение D). В пределах каждого из участков бруса эпюра линейна, поэтому достаточно знать углы поворота только для граничных сечений участков.

В сечении от Е до D полный угол закручивания вала равен

-0,0233 рад;

В сечении от Е до С полный угол закручивания вала равен

-0,0233+0,009=-0,0143 рад;

В сечении от Е до В полный угол закручивания вала равен

— 0,0233+0,009-0,0095=-0,0238 рад;

В сечении от Е до А полный угол закручивания вала равен

— 0,0233+0,009-0,0095-0,0218=-0,0456рад.

Ординаты этой эпюры дают значения углов поворота соответствующих поперечных сечений вала.

Эпюру углов поворота строим в масштабе

= .

Ответ: и полный угол закручивания -0,0456 рад.

Список литературы

1. Сопротивление материалов: учебное пособие для вузов/ Н.Н.Вассерман и др. — Пермь: Изд-ва ПНИПУ, 2011 – 364 с.

2. Прикладная механика: Учеб. Для вузов/ В.В.Джамай, Ю.Н.Дроздов, Е.А.Самойлов и др. – М. Дрофа, 2004. – 414 с.

Читайте также:  Напряжение фиксации варистора это

3. Феодосьев В.И. Сопротивление материалов. М.: МГТУ им. Н.Э. Баумана, 1999 – 592 с.

Задача № 1 Проверка прочности ступенчатого стержня при деформации растяжение и сжатие.…………………………………. 3
Задача № 2 Расчет оптимального сечения ступенчатого стержня при деформации растяжение и сжатие……………………………………………..8
Задача № 3 Расчет статически определимой стержневой системы, работающей на растяжение и сжатие………………………………………….12
Задача № 4 Расчет вала на прочность и жесткость…………………………. 15
Задача № 5 Расчет балки на прочность при плоском изгибе………………. 20
Задача №6 Расчет балки на прочность при плоском изгибе………………. 23
Задача № 7 Сравнение прочности балок различных сечений……………….27
Задача № 8 Расчет сжатого стержня на устойчивость……………………….29
Список литературы……………………………………………………………. 33

Задача № 1 Проверка прочности ступенчатого стержня при деформации растяжение и сжатие.

Задание:Оценить прочность ступенчатого стержня из хрупкого материала. Определить его деформацию. Стержень изготовлен из чугуна: Е = 1,2*10 5 МПа; σвр = 113 МПа; σвсж = 490 МПа. Допускаемый коэффициент запаса статической прочности [n] выбрать самостоятельно (в данной задаче принимаем [n]= 1,2…1,8). Весом стержня пренебречь.

Схема стержня приведена на рис. 1.

=4*10 -4 м 2 ; А2=3А=12*10 -4 м 2 ; А3=1,5А=6*10 -4 м 2 ; F1=30кН; F2=60кН; F3=20кН.

Решение. Разобьем стержень на отдельные участки, начиная от свободного конца. Границы участков определяются точками приложения внешних сил или местами изменения размеров поперечного сечения. Всего по длине стержня в данной задаче будет три участка. Проведя сечения и отбрасывая левые части стержня, можно определить продольные силы в его поперечных сечениях без вычисления опорных реакций в заделке.

Для того, чтобы определить усилие NI, проводим сечения в пределах первого участка. Рассмотрим равновесие оставшейся правой части стержня.

Из уравнения равновесия оставшейся правой части выразим внутреннюю продольную силу NI через внешние силы, приложенные к оставленной части

Так как положительное направление совпадает с деформацией растяжения, то знак минус означает, что на первом участке осуществляется деформация сжатия.

Аналогично находим внутреннее усилие NII, действующее на втором

участке. Для этого проводим произвольное сечение на втором участке и рассматриваем равновесие оставшейся правой части стержня .

Уравнение равновесия в проекции на ось стержня для второго участка

Решая это уравнение, получим

на втором участке осуществляется деформация растяжения.

Для того, чтобы определить внутреннее усилие NIII, действующее на третьем участке рассмотрим равновесие оставшейся части стержня.

Решая это уравнение, получим

Таким образом, в заделке действует реакция равная NIII =50 кН.

на третьем участке осуществляется деформация растяжения.

Эпюра продольных сил показана на рис.1. Эпюру продольных сил строим в масштабе =

Чтобы определить напряжение в поперечных сечениях бруса, нужно разделить числовые значения продольных сил на площади этих сечений.

.

Допускаемые напряжения при сжатии, при условии, что коэффициент запаса n=1,2

=490/1,2=408 Мпа.

Условие прочности для первого участка выполняется .

Недогруз конструкции на первом участке составил

*100%= = 81,7%, что выше допустимого (10%).

Для сечения 2-2: .

На втором участке деформация растяжения. Допускаемые напряжения при растяжении, при условии, что коэффициент запаса n=1,2

=113/1,2=94,2 Мпа.

Условие прочности для первого участка выполняется .

Недогруз конструкции на втором участке составил

*100%= = 73,4%, что выше допустимого (10%).

Для сечения 3-3: .

На третьем участке деформация растяжения. Допускаемые напряжения при растяжении =94,2 Мпа.

Условие прочности для третьего участка выполняется .

Недогруз конструкции на третьем участке составил

*100%= =11,6 %, что выше допустимого (10%).

Эпюра нормальных напряжений по длине бруса показана на рис. 1.

Эпюры нормальных напряжений строим в масштабе:

= .

укорочение участков бруса определяются по формуле

,

где – соответственно длина участка, внутреннее усилие, площадь поперечного сечения, напряжение в сечении. Е–модуль упругости материала.

укорочение первого участка

.

удлинение второго участка

удлинение третьего участка

.

В левом конце стержня заделка, перемещение в этом конце отсутствует. Поэтому построение эпюры деформации стержня необходимо строить, начиная с левого конца.

На третьем участке деформация изменяется от нуля до =27,78*10 -5 м;

на втором от =27,78*10 -5 м

до =31,95*10 -5 м;

на первом от 31,95*10 -5 м

до 27,78*10 -5 +4,17*10 -5 -31,25*10 -5 =0,7*10 -5 м.

Эпюры смещения строим в масштабе:

= .

Ответ: Полное удлинение бруса составило 0,7*10 -5 м и прочность стержня по допускаемым напряжениям выполняется.

Источник

Adblock
detector