Меню

Где применяется малое напряжение менее 42

Применение малых напряжений

Малое напряжение — это номинальное напряжение не более 42 В, применяемое для уменьшения опасности поражения электрическим током.

Малые напряжения используются чаще всего для питания ручного электрифицированного инструмента и переносных ламп, так как при работе с ними человек находится в длительном контакте с корпусами этого оборудования и подвергается повышенной опасности поражения электрическим током в случае повреждения изоляции. В производственных условиях ПУЭ предусматривают применение малых напряжений 12 и 36 (42) В.

Малые напряжения сами по себе обеспечивают и сравнительно небольшие значения тока через тело человека. Кроме того, надо еще учесть нелинейный характер зависимости сопротивления тела человека от приложенного напряжения, в силу которого для малых напряжений это сопротивление значительно превышает расчетное значение 1000 Ом. Например, при напряжении 12 В и сопротивлении тела человека 4 кОм ток через него не превысит 12:4=3 мА, что значительно ниже порогового неотпускающего тока.

Напряжение до 42 В включительно должно применяться в условиях с повышенной опасностью и особо опасных для питания ручного электрифицированного инструмента, переносных ламп и светильников общего назначения, размещенных над полом на высоте менее 2,5 м. При особо опасных условиях работы (темнота, сырость, возможность соприкосновения с заземленными металлоконструкциями) в особо опасных помещениях питание ручных переносных ламп должно осуществляться напряжением не выше 12 В (работа в металлической емкости, в кабельном колодце, сидя или лежа на токопроводящем полу и т. п.).

Источниками малого напряжения могут служить батареи гальванических элементов, аккумуляторы, понижающие трансформаторы. Чтобы исключить опасность перехода высшего напряжения на сторону малого или на корпус, вторичную обмотку и корпус понижающего трансформатора заземляют или зануляют. Безопасность не может быть обеспечена с помощью автотрансформатора или потенциометра: в них цепь малого напряжения электрически связана с источником питания, и прикосновение к токоведущим частям во вторичной цепи так же опасно, как и в первичной.

Следует отметить, что применение малых напряжений не обеспечивает полной гарантии безопасности. Известны случаи электропоражения людей даже при напряжении ниже 12 В, в том числе и со смертельным исходом.

Источник

Применение малых напряжений и разделяющие трансформаторы

Источниками малого напряжения могут быть аккумуляторные батареи, выпрямительные устройства при необходимости постоянного тока, однофазные трансформаторы небольшой мощности (до 1 кВА), переносные или стационарные.

Резисторы, дроссели и т.п. недопустимо использовать с целью понижения напряжения у электроприемника.

Рис. 1. Стационарный (а) и переносный (б) трансформаторы для питания ламп малого напряжения (12 — 42 В)

Выпускаются понижающие трансформаторы на 12 — 42 В вторичного напряжения небольшой мощности (до 1 кВА) как для стационарной установки (например, на станках и производственном оборудовании), так и переносные (для временного подключения к сети), например, трансформаторы типа ОСМ .

Переносный трансформатор должен иметь для подключения к сети гибкий провод, заключенный в защитную оболочку из резины или поливинилхлорида, и вилку для подключения к штепсельной розетке, установленной на щитке в РУ или в зонах применения в цехе.

Вторичные обмотки понижающих трансформаторов со вторичным напряжением 12 — 42 В обязательно заземляются, так как существует опасность повреждения трансформатора с переходом высшего напряжения на сторону низшего. Такая схема имеет и недостаток, так как в случаях замыканий на корпус или на землю в первичной сети заземляющие проводники или нулевой провод получают некоторое напряжение по отношению к земле на время до отключения поврежденного участка.

То же напряжение по отношению к земле получают все заземленные части, в том числе и вторичные обмотки и цепи малого напряжения. Это напряжение (особенно в сетях 380/220 В) может значительно превышать напряжение 42, 36 или 12 В. Между тем считается, что прикосновение к токоведущим частям при этих напряжениях не опасно.

Этот недостаток может быть устранен, если применить так называемые разделяющие трансформаторы .

Рис. 2. Включение разделяющего трансформатора (а) Двойное замыкание в сети, питающейся через разделяющий трансформатор (б).

Читайте также:  Генераторы управляемые напряжением для чего

Вторичная обмотка разделяющего трансформатора или электроприемник не должны иметь заземления. Тогда (и это — важное их преимущество!) прикосновение к частям, находящимся под напряжением, или к корпусу с поврежденной изоляцией (рис. 2, а точка А) не создает опасности, поскольку вторичная сеть коротка и токи утечки в ней при исправной изоляции ничтожно малы.

Если это замыкание в одной фазе не устранено и возникнет повреждение изоляции на другой фазе вторичной цепи (точка Б), то предохранитель может перегореть только при металлической связи между точками А и Б, этого в большинстве случаев не будет. На корпусе электроприемника появится напряжение по отношению к земле, которое будет зависеть от соотношения сопротивления в точке Б и тела человека (включая сопротивление пола и обуви). Это напряжение может оказаться опасным, если человек стоит на земле или на проводящем полу и обувь имеет малое сопротивление.

Чтобы уменьшить вероятность двойных замыканий, к разделяющим трансформаторам на вторичной стороне нельзя подключать сколько-нибудь разветвленную сеть. Так, при двух и более электроприемниках возможно замыкание в них со связью с землей в двух разных фазах. Такие двойные замыкания могут уже повлечь за собой поражения. Поэтому каждый электроприемник должен иметь свой разделяющий трансформатор.

Применение разделяющих трансформаторов дает существенное улучшение условий безопасности по сравнению с питанием непосредственно от сети или через понижающие трансформаторы с заземлением вторичных обмоток.

Источник

Применение малых напряжений

Малым называют напряжение не более 42 В, применяемое в целях уменьшения опасности поражения эл.током. Источником малого напряжения могут быть аккумулятор, гальванические элементы, преобразователь частоты и понижающие трансформаторы 220/12 (36) или 127/12 (36) В.

Малые напряжения 2,5-6 В используют в электробытовых приборах, игрушках. Эти напряжения практически безопасны.

В производстве используют напряжения 12 В в особо опасных помещениях и не более 42 В – при повышенной опасности. Эти напряжения орпасны при двухфазном прикосновении. Так, если Rчел=1 кОм, то Iчел = 12 мА при напряжении 12 В и Iчел = 36 мА при напряжении 36 В. Поэтому ПТБ предписывают применять средства индивидуальной электрозащиты (коврики и диэлектрические перчатки), сопротивление которых включается последовательно с телом человека. При этом ток при одно- и двухфазных прикосновениях резко снижается.

Однофазные прикосновения при напряжениях 12 и 36 В практически безопасны. Напр., если сопротивление изоляции Rиз=50 кОм, по известному из первой лекции уравнению (изоляция токопроводов) Iчел=3*21(3,1+50)=1,2 мА, где 21 В = 36/ — Uф – фазное напряжение в сети 36 В. Такой ток безопасен.

Опасным является переход высшего напряжения первичной обмотки понижающего трансформатора на вторичную. В этом случае значение тока поражения определится высшим напряжением.

Для уменьшения опасности вторичные обмотки и корпус понижающих трансформаторов заземляют (рис.) Для этого в однофазных трансформаторах заземляют один из выводов (рис. а), в трехфазных, соединенных в звезду – нулевую точку (рис. б), а при соединении в треугольник – одну из фаз (рис. в). Корпус понижающего трансформатора соединяют с заземленным нулевым проводом (четвертым проводом сети с глухозаземленной нейтралью) или подключают к магистрали заземления специальным проводником (в сети с изолированной нейтралью).

В качестве понижающих трансформаторов запрещается использовать автотрансформаторы: сеть малого напряжения автотрансформатора всегда связана с сетью высшего напряжения.

380 В

Схема включения понижающих трансформаторов в сеть переменного тока 380/220 В:

А – однофазного; б – трехфазного со схемой Y/Y; в – трехфазного со схемой Y/ ;

1 – корпус трансформатора, 2 – заземляющий зажим, 3 и 4 – зажимы высокого и низкого напряжения.

Источник

Применение малых напряжений

Применение малых напряжений – самая лучшая защита от воздействия электрического тока. Малые напряжения находятся в интервале 12 Вольт — 42 Вольта.

Такая необходимость возникает при использовании переносных электроприёмников, а также для освещения помещений особо опасных, в наружных электроустановках.

Аккумуляторные батареи и выпрямительные устройства, однофазные трансформаторы, мощность которых небольшая, могут служить источниками малого напряжения. Не следует использовать для понижения напряжения резисторы и дроссели.

Понижающие трансформаторы небольшой мощности выпускаются как для установки на станках, так и переносные. Гибкий провод для подключения к сети должен иметь переносный трансформатор. Провод должен быть заключён в оболочку, изготовленную из резины либо из поливинилхлорида, а также обладать вилкой, служащей для подключения к надёжной штепсельной розетке. Штепсельная розетка может быть установлена на щитке в РУ, либо в цехе в зонах применения.

У понижающих трансформаторов вторичные обмотки обязательно должны заземляться. Это обусловлено тем, что есть опасность повреждения самого трансформатора при переходе высшего напряжения к низшему.

Эта схема имеет недостаток. Ведь в случае замыкания на землю или на корпус проводники (заземляющие) оказываются под некоторым напряжением до тех пор, пока не отключить повреждённый участок. Под таким напряжением оказываются все заземлённые части. Многие считают, что такая ситуация не опасна. Всего этого можно избежать, если использовать разделительные трансформаторы.

К ним предъявляются повышенные требования. Должно быть исключено повреждение изоляции внутри самого трансформатора, когда происходит переход напряжения из первичной стороны на необходимую вторичную. Применение разделительных трансформаторов связано с одновременным понижением напряжения, а также с разделением напряжения.

Использование разделяющих трансформаторов приводит к улучшению условий безопасности. Они намного эффективнее, чем при питании непосредственно от сети, а также с помощью понижающих трансформаторов, где осуществляется заземление вторичных обмоток.

Здесь постоянно необходимо контролировать состояние изоляции трансформаторов, проводов вторичной сети и электроприёмников. Этот контроль предотвращает однофазные замыкания.

Источник

Пониженное (малое напряжение)

Одной из мер электробезопасности является применение пониженного напряжения с учетом возможной работы оборудования, приборов, аппаратуры. Так при работе всей осветительной техники применяется напряжение не выше 127/220 В. А при работе с переносным электроинструментом, а также с ручными переносными светильниками — напряжение 36 или 42 В. В помещениях с повышенной электробезопасностью, особо опасных и взрывопожароопасных помещениях, напряжение не должно превышать 12 В.

Источниками малого напряжения (12, 24, 36 и 42В) могут быть аккумуляторные батареи, понижающие трансформаторы, преобразователи частот.

При этом применение автотрансформаторов, реостатов для понижения напряжения запрещается из-за связи сетей малого и высокого напряжения.

Для снижения опасности применения понижающих трансформаторов вторичную обмотку и корпус трансформатора заземляют или проводят зануление.

Защитное заземление, зануление

Безопасная работа с электроустановками обеспечивается устройством заземления, зануления (в сетях до 1000В) и защитного отклонения.

Согласно ГОСТ 12.1. 013-80 и ГОСТ 12.1.030-80 «Электробезопасность. Защитное заземление, зануление», ГОСТ 12.1.019-79 «Электробезопасность. Общие требования и номенклатура видов защиты», заземление или зануление следует выполнять:

— при номинальном напряжении 380В и выше переменного тока, 440В и выше постоянного тока в сетях электроустановок в любых помещениях (в том числе, помещения без повышенной опасности);

— при номинальном напряжении 36В и выше (по ГОСТ 12.1.013-80), 42В и выше (по ГОСТ 12.1.030-81) переменного тока и 110В и выше постоянного тока электроустановок в помещениях с повышенной опасностью и особо опасных помещениях, в наружных электроустановках;

— при любом номинальном напряжении переменного и постоянного тока электроустановок во всех взрывоопасных условиях.

Части электроустановок, которые подлежат заземлению или занулению:

— металлические корпуса электрических машин, трансформаторов, аппаратов, светильников, передвижные электроустановки, переносные электроустановки;

— каркасы, РЩ, ЩУ и шкафы, а также съемные или открывающиеся части, если на них установлено электрооборудование напряжением выше 42В переменного тока или напряжением выше 110В постоянного тока;

— приводы электрических аппаратов;

— вторичные обмотки измерительных трансформаторов;

-металлические РУ, металлические небольшие конструкции, металлические соединительные муфты, металлические оболочки и броня контрольных и силовых кабелей, металлические оболочки проводов, трубы электропроводки и т.д.;

По своему функциональному назначению заземление делится на три вида — рабочее, защитное, заземление молниезащиты.

К рабочему заземлению относится заземление нейтралей силовых трансформаторов и генераторов, глухое или через дугогасящий реактор.

Защитное заземление выполняется для обеспечения безопасности, в первую очередь, людей.

Заземление молниезащиты служит для отвода тока молнии в землю от защитных разрядников и молниеотводов (стержневых или тросовых).

Защитное заземление должны выполнять свое назначение в течение всего года, тогда как заземление, молниезащиты — лишь в грозовой период.

Назначение защитного заземления. Защитное заземление предназначено для устранения опасности поражения электрическим током людей при соприкосновении с металлическими частями электрооборудования, оказавшимся под напряжением. Принцип действия защитного заземления состоит в снижении до безопасного уровня напряжений прикосновения и шага, вызванных замыканием на корпус электрооборудования. Достигается это уменьшением потенциала заземленного оборудования за счет малого сопротивления заземлителя, а также путем выравнивания потенциалов основания, на котором находится человек и заземленного оборудования за счет подъема потенциала основания до уровня потенциала заземленного оборудования.

Защитное заземление – это параллельное включение в электрическую цепь заземлителя со значительно меньшим сопротивлением Rз

В сетях с напряжением до 1000В сопротивление заземляющего устройства должно быть не более 4 Ом, при напряжении выше 1000В — не более-0.5 Ом.

При таком включение в электрическую цепь ток, проходящий через человека, будет равен:

(3.4.21)

где, Rr – сопротивление тела человека, Ом

Iобщ общий проходящий ток через два заземлителя (тело человека и заземлитель), Ом;

Rобщ общее сопротивление заземлителей, Ом.

Рис 3.4.6 Защитное заземленне: а – схема заземления корпуса электрооборудования; б-эквивалентная электрическая схема

(3.4.22)

(3.4.23)

После подстановки значений Rобщ и Iобщ в формулу / 3.4.21/ получим

(3.4.24)

Определить величину поражающего тока при однофазном включении человека в трехфазную сеть с изолированной нейтралью.

Допустим, что сопротивление пола и обуви: Rп = Rоб = 0 Ru = 3000 Ом

При отсутствии заземления ток поражения:

А

При наличии защитного заземления:

А

Как видим, ток поражения при наличии заземляющего устройства значительно меньше удерживающего.

Защитное заземление применяется в электроустановках напряжением до 1000В переменного тока с изолированной нейтралью или с изолированным выводом источника однофазного тока, а также электроустановках в напряжением до 1000В в сетях постоянного тока с изолированной средней точкой.

Заземление установок заключается в соединении с землей их металлических частей (нормально не находящихся под напряжением) с заземлителем, имеющим малое сопротивление растеканию тока.

Заземляющее устройство состоит из заземлителей, заземляющих шин и проводов, соединяющих корпуса электроустановок с заземлителями.

В зависимости от расположения заземлителей относительно заземленного оборудования, заземляющие устройства подразделяют на выносные и контурные (рис 3.4.7). Заземлители выносного заземляющего устройства выносятся на некоторое удаление от заземляемого оборудования. Контурное заземляющее устройство обеспечивает более высокую степень защиты, так как заземлители располагаются по контуру всего заземляемого оборудования.

Рис 3.4.7 Выносное (а) и контурное (б) заземления:

1-электроды (заземлители); 2-токовды (шины); 3-электроустановки

На практике заземление осуществляется в следующем порядке:

— выбирается заземляющее устройство (искусственное или естественное);

— рассчитывается заземляющее устройство;

-отдельные электроды (заземлители) объединяются в одно общее заземляющее устройство;

— корпуса электроустановок соединяются с заземляющим устройством;

-составляется документация для приемки заземляющего устройства в эксплуатацию.

При выборе заземляющего устройства часто используют, естественные заземлители, которыми служат трубопроводы, проложенные в земле и имеющие хороший контакт с грунтом, стальные трубы электропроводов. При строительстве промышленных зданий в качестве естественных заземлителей могут быть использованы металлические каркасы зданий.

Трубопроводы для горючих жидкостей и взрывоопасных газов использовать в качестве заземлителей запрещается. Металлические и железобетонные конструкции при использовании их в качестве заземляющих устройств должны образовывать непрерывную электрическую цепь по металлу (в железобетонных конструкциях должны предусматриваться закладные детали для присоединения электрического и технологического оборудования).

При использовании железобетонных фундаментов в качестве заземлителей сопротивление растеканию тока заземляющего устройства определяется по формуле

(3.4.25.)

где Qэ — удельное эквивалентное электрическое сопротивление земли, Ом • м;

s — площадь, ограниченная периметром зда­ния, м 2 .

Источник

Adblock
detector