Меню

Генератор для умножитель напряжения

Генератор для умножитель напряжения

Умножитель напряжения — схема выпрямителя особого типа, амплитуда напряжение на выходе которой теоретически в целое число раз выше, чем на входе. То есть, с помощью удвоителя напряжения можно получить 200 В постоянного тока из 100 В переменного тока источника, а с помощью умножителя на четыре — 400 В постоянного. Это если не учитывать падение напряжения на диодах (0,7В на каждом).

В реальных схемах любая нагрузка будет уменьшать полученное напряжение. Умножитель содержит в себе конденсаторы и диоды. Нагрузочная способность умножителя пропорциональна частоте, величине емкости входящих в его состав конденсаторов и обратно пропорциональна числу звеньев.

А теперь, к Вашему вниманию — «экспонаты» коллекции:

  • Удвоитель напряжения Латура-Делона-Гренашера

Особенности: хорошая нагрузочная способность.

Несимметричный умножитель напряжения (Кокрофта-Уолтона)

Особенности: универсальность, низкая нагрузочная способность.

Генераторы Кокрофта-Уолтона применяются во многих областях техники, в частности, в лазерных системах, в источниках высокого напряжения, в системах рентгеновского излучения, подсветке жидкокристаллических экранов, лампах бегущей волны, ионных насосах, электростатических системах, ионизаторах воздуха, ускорителях частиц, копировальных аппаратах, осциллографах, телевизорах и во многих других устройствах, где необходимо одновременно высокое напряжение и постоянный ток.

  • Утроитель, 1-й вариант

Особенности: хорошая нагрузочная способность.

Утроитель, 2-й вариант

Особенности: хорошая нагрузочная способность.

Утроитель, 3-й вариант

Особенности: хорошая нагрузочная способность.

Умножитель на 4, 1-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность.

Умножитель на 4, 2-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность.

Умножитель на 4, 3-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность, две полярности относительно общей точки.

Умножитель на 5, 1-й вариант

Особенности: хорошая нагрузочная способность.

Умножитель на 6, 1-й вариант

Особенности: хорошая нагрузочная способность.

Умножитель на 6, 2-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность, две полярности относительно общей точки.

Умножитель на 8, 1-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность.

Умножитель на 8, 2-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность, две полярности относительно общей точки.

Умножитель напряжения Шенкеля – Вилларда

Особенности: симметричная схема, превосходная нагрузочная способность, ступенчатое увеличение напряжения на каждом звене.

Умножитель со ступенчатой нагрузочной способностью

Особенности: нагрузочная характеристика имеет две области — область низкой мощности – в диапазоне выходных напряжений от 2U до U и область повышенной мощности – при выходном напряжении ниже U.

Выпрямитель с вольтодобавкой

Особенности: наличие дополнительного маломощного выхода с удвоенным напряжением питания.

Умножитель из диодных мостов

Особенности: хорошая нагрузочная способность. Одна из классических схем умножения напряжения в высоковольтных источниках питания для физических экспериментов. На рисунке изображен удвоитель напряжения, но число каскадов в умножителе может быть увеличено.

Источник

Опасное развлечение: простой для повторения генератор высокого напряжения

Добрый день, уважаемые хабровчане.
Этот пост будет немного необычным.
В нём я расскажу, как сделать простой и достаточно мощный генератор высокого напряжения (280 000 вольт). За основу я взял схему Генератора Маркса. Особенность моей схемы в том, что я пересчитал её под доступные и недорогие детали. К тому же сама схема проста для повторения (у меня на её сборку ушло 15 минут), не требует настройки и запускается с первого раза. На мой взгляд намного проще чем трансформатор Теслы или умножитель напряжения Кокрофта-Уолтона.

Принцип работы

Сразу после включения начинают заряжаться конденсаторы. В моём случае до 35 киловольт. Как только напряжение достигнет порога пробоя одного из разрядников, конденсаторы через разрядник соединятся последовательно, что приведёт к удвоению напряжения на конденсаторах, подсоединённых к этому разряднику. Из-за этого практически мгновенно срабатывают остальные разрядники, и напряжение на конденсаторах складывается. Я использовал 12 ступеней, то есть напряжение должно умножиться на 12 (12 х 35 = 420). 420 киловольт — это почти полуметровые разряды. Но на практике, с учетом всех потерь, получились разряды длиной 28 см. Потери были вследствие коронных разрядов.

О деталях:

Сама схема простая, состоит из конденсаторов, резисторов и разрядников. Ещё потребуется источник питания. Так как все детали высоковольтные, возникает вопрос, где же их достать? Теперь обо всём по порядку:

1 — резисторы

Нужны резисторы на 100 кОм, 5 ватт, 50 000 вольт.
Я пробовал много заводских резисторов, но ни один не выдерживал такого напряжения — дуга пробивала поверх корпуса и ничего не работало. Тщательное загугливание дало неожиданный ответ: мастера, которые собирали генератор Маркса на напряжение более 100 000 вольт, использовали сложные жидкостные резисторы генератор Маркса на жидкостных резисторах, или же использовали очень много ступеней. Я захотел чего-то проще и сделал резисторы из дерева.

Отломал на улице две ровных веточки сырого древа (сухое ток не проводит) и включил первую ветку вместо группы резисторов справа от конденсаторов, вторую ветку вместо группы резисторов слева от конденсаторов. Получилось две веточки с множеством выводов через равные расстояния. Выводы я делал путём наматывания оголённого провода поверх веток. Как показывает опыт, такие резисторы выдерживают напряжение в десятки мегавольт (10 000 000 вольт)

2 — конденсаторы

Тут всё проще. Я взял конденсаторы, которые были самыми дешевыми на радио рынке — К15-4, 470 пкф, 30 кВ, (они же гриншиты). Их использовали в ламповых телевизорах, поэтому сейчас их можно купить на разборке или попросить бесплатно. Напряжение в 35 киловольт они выдерживают хорошо, ни один не пробило.

3 — источник питания

Собирать отдельную схему для питания моего генератора Маркса у меня просто не поднялась рука. Потому, что на днях мне соседка отдала старенький телевизор «Электрон ТЦ-451». На аноде кинескопа в цветных телевизорах используется постоянное напряжение около 27 000 вольт. Я отсоединил высоковольтный провод (присоску) с анода кинескопа и решил проверить, какая дуга получится от этого напряжения.

Вдоволь наигравшись с дугой, пришел к выводу, что схема в телевизоре достаточно стабильная, легко выдерживает перегрузки и в случае короткого замыкания срабатывает защита и ничего не сгорает. Схема в телевизоре имеет запас по мощности и мне удалось разогнать её с 27 до 35 киловольт. Для этого я покрутил подстроичник R2 в модуле питания телевизора так, что питание в строчной развертке поднялось с 125 до 150 вольт, что в свою очередь привело к повышению анодного напряжения до 35 киловольт. При попытке ещё больше увеличить напряжение, пробивает транзистор КТ838А в строчной развёртке телевизора, поэтому нужно не переборщить.

Процесс сборки

С помощью медной проволоки я прикрутил конденсаторы к веткам дерева. Между конденсаторами должно быть расстояние 37 мм, иначе может произойти нежелательный пробой. Свободные концы проволоки я загнул так, чтобы между ними получилось 30 мм — это будут разрядники.

Лучше один раз увидеть, чем 100 раз услышать. Смотрите видео, где я подробно показал процесс сборки и работу генератора:

Техника безопасности

Нужно соблюдать особую осторожность, так как схема работает на постоянном напряжении и разряд даже от одного конденсатора будет скорее всего смертельным. При включении схемы нужно находиться на достаточном удалении потому, что электричество пробивает через воздух 20 см и даже более. После каждого выключения нужно обязательно разряжать все конденсаторы (даже те, что стоят в телевизоре) хорошо заземлённым проводом.

Лучше из комнаты, где будут проводиться опыты, убрать всю электронику. Разряды создают мощные электромагнитные импульсы. Телефон, клавиатура и монитор, которые показаны у меня в видео, вышли из строя и ремонту больше не подлежат! Даже в соседней комнате у меня выключился газовый котёл.

Нужно беречь слух. Шум от разрядов похож на выстрелы, потом от него звенит в ушах.

Интересные наблюдения

Первое, что ощущаешь при включении — то, как электризуется воздух в комнате. Напряженность электрического поля настолько высока, что чувствуется каждым волоском тела.

Хорошо заметен коронный разряд. Красивое голубоватое свечение вокруг деталей и проводов.
Постоянно слегка бьет током, иногда даже не поймёшь от чего: прикоснулся к двери — проскочила искра, захотел взять ножницы — стрельнуло от ножниц. В темноте заметил, что искры проскакивают между разными металлическими предметами, не связанными с генератором: в дипломате с инструментом проскакивали искорки между отвёртками, плоскогубцами, паяльником.

Лампочки загораются сами по себе, без проводов.

Озоном пахнет по всему дому, как после грозы.

Заключение

Все детали обойдутся где-то в 50 грн (5$), это старый телевизор и конденсаторы. Сейчас я разрабатываю принципиально новую схему, с целью без особых затрат получать метровые разряды. Вы спросите: какое применение данной схемы? Отвечу, что применения есть, но обсуждать их нужно уже в другой теме.

На этом у меня всё, соблюдайте осторожность при работе с высоким напряжением.

Источник

Генератор для умножитель напряжения

Назначение умножителей напряжения, структура и нагрузочная способность

Умножители напряжения по структуре представляют собой специализированные выпрямители, обеспечивающие повышение выходного напряжения в целое число раз. Отсюда и название – умножители напряжения. [Диссертация — Хречков, Николай Григорьевич «Динамические характеристики умножителей напряжения высоковольтных электротехнических систем», 2006 г.]. Традиционным является применение умножителей напряжения в высоковольтных источниках питания, что позволяет существенно уменьшить их массогабаритные показатели. Дело в том, что использование в высоковольтных источниках выпрямителей (однополупериодного, с общей точкой, мостового) в источниках высокого напряжения оправдано только в случае, когда требуется высокая мощность источника, поскольку при использовании выпрямителя необходимо и использовать трансформатор, рассчитанный на напряжение, равное выходному. Разработка и создание трансформаторов с высоким выходным напряжением (более 15-20 кВ) является сложной технической задачей (секционирование обмоток, межслоевая изоляция, заливка компаундом и т.д.) кроме этого трансформаторы такого класса имеют большие габариты и стоимость. Использование умножителя напряжения позволяет снизить требования к выходному напряжению трансформатора и существенно упростить его конструктив. Таким образом, умножитель напряжения является одним из базовых элементов высоковольтного преобразователя.

На вход умножителей напряжения подается переменное напряжение, на выходе получаем умноженное постоянное. Любой умножитель содержит в себе два типа элементов – конденсаторы и диоды. По структуре электрической схемы умножители делятся на несимметричные и симметричные. Отличие заключается в том, что в симметричных схемах ток, потребляемый от источника переменного напряжения, одинаков по форме в течение обоих полупериодов, а в несимметричных схемах формы импульсов тока при отрицательном и положительном полупериодах различны. Это может вызвать «вылет» рабочего режима магнитопровода в область насыщения. Кроме этого частота пульсаций в симметричных умножителях напряжения в два раза меньше по сравнению с несимметричными, что обеспечивает их лучшую нагрузочную способность. Поэтому при большой выходной мощности высоковольтного источника целесообразно применять симметричные умножители. При этом важно понимать, что симметричный умножитель состоит из двух несимметричных.

Подробный аналитический расчет режимов работы умножителей напряжения представлен в [Диссертация — Хречков Николай Григорьевич «Динамические характеристики умножителей напряжения высоковольтных электро-технических систем», 2006 г.].

Факторы, влияющие на нагрузочную способность умножителя напряжения:

Структура схемы определяет нагрузочную способность умножителя, симметричные схемы умножения напряжения имеют несколько большую нагрузочную способность по сравнению с несимметричными.

Частота напряжения на входе умножителя. Нагрузочная способность прямо пропорциональна частоте, с ограничениями по верхней её величине накладываемым паразитными элементами схемы – емкостями диодов, индуктивностями проводников схемы и обкладок конденсаторов. Кроме этого, конденсаторы имеют некоторую пороговую частоту, выше которой снижается максимально допустимая величина напряжения.

Величина емкости входящих в его состав конденсаторов. Нагрузочная способность прямо пропорциональна емкости конденсаторов в звеньях умножителя.

Число звеньев умножителя. Нагрузочная способность обратно пропорциональна числу звеньев умножителя.

Форма напряжения в теории может быть любой, однако максимальная нагрузочная способность при прочих равных факторах достигается, при напряжении, имеющем форму разнополярных прямоугольных импульсов одинаковой амплитуды.

Ниже представлены типовые схемы умножителей напряжения различных типов.

Несимметричный умножитель напряжения (Villard cascade)

Рисунок MULT.1 — Электрическая схема несимметричного умножителя напряжения

Принцип работы: В течение отрицательного полупериода конденсатор C1 заряжается от источника переменного напряжения до амплитудного значения; в течение положительной полуволны к конденсатору C2 прикладывается суммарное напряжение источника питания и конденсатора C2 и за нескольких периодов он заряжается до удвоенного напряжения. Аналогично ступенчато происходит заряд последующих конденсаторов: заряд конденсатора C3 происходит, начиная со второго отрицательного периода, конденсатора C4 – начиная со второго положительного и так далее. Так, за несколько периодов умножитель выходит на квазистационарный режим и суммарное выходное напряжение на каждом из конденсаторов, кроме первого равно удвоенному амплитудному значению источника. Максимальное обратное напряжение на диодах также равно удвоенному амплитудному значению.

Особенности: универсальность, низкая нагрузочная способность. Эффективность резко снижается с увеличением числа звеньев умножителя. Общая «земля».

Величина пульсаций на выходе умножителя ∆V для синусоидальной формы выходного напряжения определяется по формуле [E. Kuffel, W.S. Zaengl and J. Kuffel. High Voltage Engineering Fundamentals (Second Edition). Newnes. 2000. 539 p.; http://www.kronjaeger.com/hv/hv/src/mul/ ]:

при 0.5 C1=C2=C3 =… Cn (то есть при удвоенном значении емкости C1 относительно остальных).

где n – число звеньев умножителя.

Симметричный умножитель напряжения (Double Villard cascade)

Данный симметричный умножитель напряжения фактически представляет собой два соединенных несимметричных умножителя с различными полярностями напряжения относительно общей точки.

Рисунок MULT.2 Электрическая схема симметричного умножителя напряжения (последовательный тип)

Принцип работы: аналогичен принципу работы несимметричного умножителя напряжения (Villard cascade).

Особенности: универсальность, низкая нагрузочная способность. Эффективность резко снижается с увеличением числа звеньев умножителя. Общая «земля». Возможность реализации двух полярностей напряжения относительно общей точки. Различные варианты подключения источника питающего переменного напряжения к умножителю (рисунок MULT.2). Преимуществом схемы является одинаковое падение напряжения на конденсаторах, что позволяет использовать конденсаторы одного типа (рассчитанных на одинаковое напряжение).

Величина пульсаций на выходе умножителя ΔV рассчитывается по выше приведенным соотношениям, умноженным на два (поскольку фактически умножителей в структуре схемы два).

Симметричный умножитель напряжения Шенкеля – Вилларда

Рисунок MULT.3 — Электрическая схема симметричного умножителя напряжения Шенкеля – Вилларда (параллельный тип)

Принцип работы: в течение первого положительного полупериода происходит заряд емкостей С1, С3, … Сn (нечетные) до напряжения питания, во время последующей отрицательной полуволны заряжаются емкости С2, С4, … С(n-1) (четные) заряжаются до напряжения питания через четные емкости уменьшая их напряжение практически до нуля. В течение следующего положительного периода заряд каждого нечетного конденсатора происходит удвоенным напряжением последовательного соединения источника питания и четного конденсатора умножителя. При этом нечетные конденсаторы заряжаются до напряжения большего амплитудного. В процессе работы происходит ступенчатый рост напряжения на конденсаторах умножителя начиная с Сn.

Особенности: симметричная схема, превосходная нагрузочная способность, ступенчатое увеличение напряжения на каждом звене. Общая «земля».

Гибридный умножитель напряжения последовательно-параллельного типа

Рисунок MULT.4 — Электрическая схема симметричного умножителя напряженияумножитель напряжения последовательно-параллельного типа

Принцип работы: в течение первого положительного полупериода происходит заряд емкостей последовательного столба С2, С4, … Сn (четные) главным образом через емкость С1 заряжающейся в течение первого положительного полупериода противоположно. В течение следующего отрицательного полупериода происходит заряд нечетных емкостей С1, С3, … С(n-1) до уровней напряжений превышающих амплитудное, поскольку к ним прикладывается суммарное напряжение источника питания и емкостей последовательного столба С2, С4, соединенных последовательно. При этом С(n-1) емкость имеет максимальное напряжение, поскольку к ней прикладывается напряжение полного столба и источника питания, а «нижние» емкости заряжаются до меньшего напряжения поскольку к ним прикладывается напряжение только части последовательного столба. В этот полупериод емкости последовательного столба несколько разряжаются.

В течение следующего положительного периода емкости последовательного столба С2, С4 заряжаются до большего чем в предыдущем положительном полупериоде уровня напряжения, так как к ним прикладывается суммарное напряжение источник питания и напряжений на емкостях С1, С3, … С(n-1). Так в процессе работы происходит ступенчатый рост напряжения на конденсаторах и соответствующее увеличение выходного напряжения.

Особенности: гибридная схема, обеспечивающая высокую нагрузочную способность симметричных схем. Преимуществом схемы является возможность использования в правом ёмкостном «столбе» одинаковых (рассчитанных на одинаковое напряжение) конденсаторов большой емкости качестве накопительно-фильтрующих элементов и применение конденсаторов меньшей емкости в левой части схемы, но рассчитанных на существенно большее напряжение (по причине ступенчатого увеличения напряжения на каждом звене). Общая «земля».

Симметричный умножитель на основе диодных мостов

Рисунок MULT.5 — Электрическая схема симметричного умножителя напряжения на основе диодных мостов

Принцип работы: в целом аналогичен принципу работы симметричного умножителя напряжения Шенкеля – Вилларда.

Особенности: хорошая нагрузочная способность. Одна из классических схем умножения напряжения в высоковольтных источниках питания для физических экспериментов.

Симметричный двухполупериодный умножитель Кокрофта-Уолтона

Рисунок MULT.6 — Электрическая схема симметричного умножителя напряженияКокрофта-Уолтона

Особенности: хорошая нагрузочная способность. Схема широко используется высоковольтных источниках питания для физических экспериментов.

Величина пульсаций на выходе умножителя для синусоидальной формы выходного напряжения определяется по формуле [А.А. Ровдо Полупроводниковые диоды и схемы с диодами. Лайт Лтд. 2000. 286 с.]:

Удвоитель напряжения Латура-Делона-Гренашера

Рисунок MULT.7 — Удвоитель напряжения Латура-Делона-Гренашера

Фактически схема является удвоенным однополупериодным выпрямителем напряжения, верхнее плечо которого выпрямляет положительную полуволну, нижнее – отрицательную.

Принцип работы: в течение положительного полупериода через диод VD1 заряжается конденсатор C1, в течение отрицательного полупериода через диод VD2 заряжается конденсатор C2. К нагрузке прикладывается удвоенное напряжение.

Особенности: хорошая нагрузочная способность. Симметричная схема. Классика.

Примеры схемотехнических реализаций умножителей напряжения

Далее представлены несколько частных случаев умножителей напряжения.

Утроители напряжения

Рисунок MULT.8 — Частный случай несимметричного умножителя напряжения с числом ступеней равным 3

Рисунок MULT.9 — Частный случай симметричного умножителя напряжения Шенкеля – Вилларда с числом ступеней равным 3.

Умножители на 4

Рисунок MULT.10 — Частный случай гибридного умножителя напряжения с числом звеньев равным 4.

Рисунок MULT.11 — Частный случай симметричного умножителя напряжения Шенкеля – Вилларда с числом ступеней равным 4.

Умножитель на 6

Рисунок MULT.12 — Частный случай симметричного умножителя напряжения с различным числом ступеней (см. рисунок MULT.2 симметричного умножителя) и однополярным включением относительно общей точки.

Умножитель на 8

Рисунок MULT.13 — Частный случай симметричного умножителя напряжения (см. рисунок MULT.2 симметричного умножителя) и однополярным включением относительно общей точки.

Требования к диодам и конденсаторам умножителей напряжения

Основные требования, предъявляемые к диодам , используемым в схемах умножителей:

– максимально допустимая величина обратного напряжения диода должна с запасом (как минимум на 20 %) превышать рабочее напряжение в схеме;

— быстрое восстановление изолирующих свойств при смене полярности напряжения. С этой целью рекомендуется использование диодов класса Ultra-Fast с временем обратного восстановления порядка 10-50 нс;

— малая паразитная емкость. В связи с этим не является целесообразным использование диодов с большим запасом по току, т.к. у них большая емкость.

Как правило, средние значения тока протекающего через диоды умножителей напряжения не превышает сотен миллиампер, поэтому в умножителях напряжениях используются диоды, рассчитанные на малый ток и большое напряжение (таблица MULT.1). При необходимости обеспечения большего значения обратного напряжения допустимо использование последовательного соединения диодов, но при этом необходимо, чтобы диоды были одинакового типа и желательно одной партии.

Таблица MULT.1 — Основные характеристики быстродействующих диодов

Марка диода

Максимальное обратное напряжение, В

Средний ток, А

Время обратного восстановления, нс

Источник

Читайте также:  Регулирование силы тока напряжением
Adblock
detector