Меню

Lm338t блок питания с регулировкой напряжения

Lm338t Характеристики Схема Подключения

Вот на нее ссылка на али ru. Все мощные микросхемы можно установить на один общий радиатор через слюдяные прокладки, поскольку корпуса микросхем не должны соединяться вместе.


Как обычно, начинаем с самых маленьких элементов.

Примеры применения стабилизатора LM схемы включения Следующие примеры продемонстрируют вам несколько очень интересных и полезных схем питания построенных с помощью LM Путем подбора сопротивления R2 можно скорректировать необходимое выходное напряжение в соответствии с типом аккумулятора.
Простой регулируемый источник питания на LM1084

Питание собранного модуля осуществляется от блока питания 12В 5А. Лампа, освещенность которой необходимо держать на стабильном уровне, питается от выхода LM

Опорное напряжение это то напряжение которое микросхема стабилизатора стремиться поддерживать на резисторе R1.

Но на многих проектах не какого охлаждения не увидел.

Все, включая монтажную плату, выглядит прилично, откровенного брака нигде не видно.

Мощные резисторы по 0,3 Ом.

LM317 ошибка гуляющая по Интернету

Электрические характеристики LM338

Высыпаем содержимое всех пакетиков на стол. Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В. Второй параметр — ток вытекающий из вывода подстройки по сути является паразитным, производители обещают что он в среднем составит 50 мкА, максимум мкА, но в реальных условиях он может достигать мкА.

Попробуем немного уменьшить напряжение.

И пользуясь случаем задам вопрос.

Такое чувство, что комплектовал набор не сильно трезвый китаец : Следующим этапом была установка огромных конденсаторов, сбрасываемого предохранителя 30V3A, а так же переключателя на выходные контакты.
60_57.JPG»/>
В сегодняшнем обзоре речь пойдет об очередном конструкторе после сборки которого получится понижающий модуль на LMK, а проще говоря — регулируемый блок питания : Причиной его покупки стал мой интерес к конструкторам подобного рода, а так же возможность использовать собранный гаджет в последующем.

Попробуем немного уменьшить напряжение. Разве что за время транспортировки ножки почти всех элементов погнулись, но на работоспособности конструкции это никак не скажется.

Получается небольшая кучка разнообразных радиодеталей.
Мощный лабораторный блок питания своими руками

Блок питания на LM338K, 5А/1.2-25В — Меандр — занимательная электроника

Примеры применения стабилизатора LM схемы включения Следующие примеры продемонстрируют вам несколько очень интересных и полезных схем питания построенных с помощью LM

Внутри оказалась монтажная плата, крепление индикатора, четыре винта и парочка резисторов, а так же еще два пакетика поменьше.

В принципе, больше ничего интересного в отдельно валяющихся элементах нет, а значит можно переходить к сборке блока питания. Резистором RS можно задать необходимый ток зарядки для конкретного аккумулятора.

Подготовлено для сайта RadioStorage. Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В. Попробуем немного уменьшить напряжение. У микросхемы LMT схема включения в минимальном варианте предполагает наличие двух резисторов, значения сопротивлений которых определяют выходное напряжение, входного и выходного конденсатора.

Quem id mentitum e velit, nam mentitum in expetendis. Зарядное устройство 12В на LM Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов.


После окончательной сборки получается довольно симпатичный блок питания на медных ножках, который выглядит следующим образом: Для того, чтобы прикрепить индикатор вольтметра в корпусе вентилятора необходимо проделать отверстия, так как комплектные саморезы могут расколоть пластик. Мощные резисторы по 0,3 Ом. На ней отсутствует конденсатор С4 — его припаиваем к выводам переменного резистора R1, который будет крепиться на корпусе устройства и послужит для регулировки напряжения. Так что данный набор отлично подойдет даже начинающему радиолюбителю : Сперва резисторы, диоды, клеммник, диодный мост KBL, стабилизатор напряжения LM

Читайте также:  Реле контроля напряжения сигнал

Выглядит она следующим образом: К качеству изготовления элементов конструктора претензий у меня нет. Данный стабилизатор напряжения, производства Texas Instruments, является универсальной интегральной микросхемой, которая может быть подключена многочисленными способами для получения высококачественных цепей питания. Схема плавного включения мягкий старт блока питания Некоторые чувствительные электронные схемы требуют плавного включения электропитания.

Переменный резистор R1 используется для плавного регулирования выходного напряжения. Например, диодный мост из четырех выпрямительных диодов Д обеспечит рабочие токи до 10А.
Компактный простой ЛБП на LM317 350 338

Основные технические характеристики LM338

Контакты Мощный блок питания на напряжение В и ток 5AA и более LM, Приведена принципиальная схема простого в изготовлении стабилизированного и мощного блока питания с регулируемым выходным напряжением от 5В до 35В и током нагрузки 5А, 10А, 20А, 30А, 40А и более в зависимости от количества микросхем. Внутри оказалась монтажная плата, крепление индикатора, четыре винта и парочка резисторов, а так же еще два пакетика поменьше.

Подготовлено для сайта RadioStorage. Детали Транзистор BD нужно установить на небольшой радиатор.

Согласно описанию, микросхема LM работает при достаточно широком разбросе входного напряжения, этот диапазон может лежать в пределах от 3-х до 35 Вольт. Резистор R1 точно подобран таким образом, чтобы поддерживать безопасные 5 ампер предельного тока ограничения, которые могут быть получены из цепи. Так что данный набор отлично подойдет даже начинающему радиолюбителю : Сперва резисторы, диоды, клеммник, диодный мост KBL, стабилизатор напряжения LM

Дабы установить соответствие этих данных истине воспользуемся мультиметром. Я сначала мочил по привычке но это делать не обязательно. Он используется как датчик, который подключен между adj LM и землей.

Вы можете скачать файл с нашего сервера, благодарность сайту приветствуется, особенно материальная. В качестве резисторов R3, R Уважаемый Пользователь! Зарядное устройство 12В на LM Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов.

А то я руководствовался вот этими записями www. Так что данный набор отлично подойдет даже начинающему радиолюбителю : Сперва резисторы, диоды, клеммник, диодный мост KBL, стабилизатор напряжения LM Эти диоды должны быть рассчитаны на ток, который планируется получить на выходе стабилизатора.

Лично меня данная покупка удовлетворила полностью, жаль только, что некоторых деталей изначально не хватало… На этом, пожалуй, все. Так вот, в комплекте их четыре, а нужен только один… А вот диодов в комплекте два, хоть на плате разметка под три. Срезав одну из сторон можно заглянуть внутрь и посмотреть на содержимое посылки. Я специально на плату нанес текст очень мелким шрифтом. Цоколевка расположение выводов у микросхем LM

Смысл в ней в том что она тонкая и к ней нефига не прилипает. Можно сказать просто урезал. Разве что за время транспортировки ножки почти всех элементов погнулись, но на работоспособности конструкции это никак не скажется.
Как собрать Простую Схему Блока Питания LM317 — СС#7

Источник

Поделки своими руками для автолюбителей

Схемы зарядных устройств (с использованием LM317, LM338)

В настоящей статье мы обсудим несколько простых схем зарядных устройств, предназначенных для зарядки аккумуляторов 12 В. Эти устройства очень простые и недорогие по своей конструкции, но при

этом обладают высокой точностью в поддержании выходного напряжения и тока.
Все предложенные здесь схемы контролируют выходной ток. Это означает, что поступающий в аккумулятор ток никогда не будет выходить за предварительно определенный, фиксированный уровень.

Читайте также:  Плита электрическая напряжение питания

Примечание: Если вам нужно зарядное устройство для аккумуляторов с мощным током, то ваши потребности могут быть удовлетворены данными конструкциями устройств зарядки свинцово-кислотных аккумуляторов.

Простейшее зарядное устройство для аккумуляторов 12 В

Как я неоднократно повторял во многих статьях, основным критерием безопасной зарядки аккумулятора является поддержание максимально входного напряжения, величина которого чуть ниже напряжения зарядки, указанного в спецификации аккумулятора, а также поддержание тока на уровне, не вызывающем нагрев аккумулятора.

При соблюдении этих двух условий вы можете заряжать любой аккумулятор, используя простую, приведённую схему.

В приведенной, простейшей схеме, выход трансформатора составляет 12 В. Это означает, что пиковое напряжение после выпрямления будет составлять 12 х 1.41 = 16.92 В. Хотя это несколько выше, чем 14 В, уровня полного заряда для аккумулятора, сам аккумулятор поврежден не будет.
При этом рекомендуется отключать аккумулятор, как только амперметр покажет нулевое значение напряжения.

Автоматическое отключение: Если вы хотите, чтобы приведенная выше схема обеспечивала автоматическое отключение зарядного устройства по завершению зарядки, вы легко можете добиться этого, добавив на выход биполярный транзистор, как показано ниже:

В данной схеме мы использовали общий эмиттер биполярного транзистора, к базе которого подключено 15 В. Это означает, что напряжение эмиттера никогда не опустится ниже 14 В.
А когда на контактах аккумулятора напряжение превысит 14 В, транзистор переходит в состояние обратного смещения, и просто осуществляет автоматический режим отключения. Вы можете изменять значение напряжения 15 В стабилитрона, пока не получите для аккумулятора напряжение примерно в 14.3 В.

В результате первая схема преобразуется в полностью автоматическую систему зарядки АКБ, которую несложно сделать. Кроме того, поскольку здесь не используется конденсаторный фильтр, то 16 В применяется не в качестве непрерывного напряжения постоянного тока, а скорее, как 100 Гц выключатель. Это снижает нагрузку на аккумулятор, а также предотвращает сульфатирование пластин аккумулятора.

Почему важен контроль тока?

Зарядка аккумулятора любого вида может носить критический характер, и поэтому требует уделять ей определенное внимание. Когда сила тока, заряжающего аккумулятор, значимо высокая, контроль тока становится важным фактором.
Все мы знаем, насколько «умными» являются линейные стабилизаторы LM317, и не удивительно, что эти устройства применяются в большом количестве схем и приложений, требующих точное управление мощностью.

Представленная ниже схема зарядного устройства для аккумуляторов 12В с контролем тока на базе LM317 показывает, как можно сконфигурировать LM317, используя всего лишь пару сопротивлений и источник питания в виде стандартного диодного моста для обеспечения зарядки аккумулятора 12 В со всей возможной точностью.

Как это работает?

Стабилизатор подключается в обычном режиме, когда сопротивления R1 и R2 используются для требуемой регулировки напряжения. Входная мощность подается на LM317 с обычного диодного моста. После фильтрации через конденсатор C1 напряжение составляет примерно 14 вольт. Отфильтрованный постоянный ток с напряжением в 14 В, поступает на входной контакт стабилизатора.
Контакт регулировки LM317 подключён через фиксированное сопротивление R1 и переменное сопротивление R2. Изменяя величину сопротивления R2 может плавно менять выходное напряжение, подаваемое на аккумулятор. Без подключения сопротивления Rc вся схема вела бы себя, как простой источник питания.

Однако сопротивление Rc и транзистор BC547 на указанных позициях в схеме, обеспечивают возможность воспринимать ток, поступающий в аккумулятор.
Пока этот ток остается в требуемых безопасных границах, напряжение остается на заданном уровне. Однако при повышении силы тока стабилизатор снижает напряжение, ограничивая дальнейший рост тока и гарантируя безопасность аккумулятора.

Читайте также:  Расчет выходного напряжения датчика напряжения

Формула для расчета Rc:

R = 0.6/I, где I — максимальная величина требуемого выходного тока.

Для оптимальной работы LM317 будет требоваться наличие теплоотвода (радиатора).

Для наблюдения за состоянием зарядки аккумулятора используется подключенный к схеме потенциометр. Как только он покажет нулевое напряжение, аккумулятор можно отсоединить от зарядного устройства и использовать по назначению.

Принципиальная схема № 1

Список элементов

Для изготовления описанной выше схемы требуются следующие элементы;
R1 = 240 Ом
R2 = 10 кОм с предварительной установкой
C1 = 1000 мкФ/25 В
Диоды = 1N4007
TR1 = 0-14 В, 1 А

Как подсоединить потенциометр к схеме с LM317 или LM338?

Следующая схема (2) показывает, как правильно подключить 3-контактный потенциометр к схеме, использующей стабилизатор напряжения LM317 или LM338. Для подключения потенциометра к схеме его центральный контакт и любой боковой контакт соединяется с выходными контактами схемы. Третий контакт потенциометра не используется.

Компактное зарядное устройство аккумуляторов 12В на базе LM338

Интегральная схема LM 338 представляет собой выдающееся устройство, которое может быть применено в неограниченном числе возможных приложений электронных схем. Ниже мы покажем, как использовать ее для получения автоматического зарядного устройства аккумуляторов 12 В.

Почему именно ИС LM338 ?

Основной функцией этой ИС является управление напряжением, и при незначительных, простых модификациях она может быть применена для управления током.
Схема зарядного устройства аккумуляторов идеально подходит для этой ИС и мы намерены изучить одну такую схему для создания автоматического зарядного устройства аккумуляторов 12 В с использованием ИС LM338.
Обращаясь к принципиальной схеме, мы видим, что вся схема построена вокруг ИС LM301, формирующей схему управления для выполнения отключения.
LM338 настроена в качестве контроллера силы тока, и как модуль прерывающего выключателя.

Использование LM338 в качестве регулятора, а операционного усилителя в качестве компаратора

Вся работа зарядного устройства может быть проанализирована с учетом следующих соображений: LM 301 используется в качестве компаратора и её не инвертированный вход подключается к опорной точке, создаваемой делителем напряжения, состоящего из R2 и R3. Напряжение, снятое с точки соединения R3 и R4, используется для установки выходного напряжения LM338 на уровень, который несколько выше требуемого напряжения зарядки – это примерно 14 вольт.
Данное напряжение подается на заряжаемый аккумулятор через сопротивление R6, включенное в схему в качестве датчика силы тока.
Сопротивление в 500 Ом, соединяющее входные и выходные контакты LM338, гарантирует, что даже после того, как схема будет автоматически отключена, аккумулятор будет постепенно заряжаться пока он остается подключенным к выходу схемы.
Кнопка пуска (start) используется для запуска процесса зарядки после подсоединения к выходу схемы частично разряженного аккумулятора.
Выбор величины R6 позволяет получать различные скорости зарядки в зависимости от емкости аккумулятора.

Функционирования схемы (согласно объяснениям +ElectronLover)

«После того, как заряжаемый аккумулятор будет иметь полный заряд, напряжение на инвертированном входе операционного усилителя станет выше установленного напряжения на неинвертированном входе LM338. Это моментально переключит логику усилителя на низкий уровень».

Согласно моим предположениям:
V+ = VCC — 74 мВ
V- = VCC — Ток зарядки x R6
VCC= напряжение на контакте 7 усилителя

Когда аккумулятор зарядится полностью, ток зарядки уменьшается. V- становится выше, чем V+, выход усилителя снижается, включая PNP и LED.
Кроме того, поскольку R4 через диод будет соединено с заземлением, то R4 становится параллельным R1, снижая фактическое сопротивление на управляющем контакте LM338 до уровня заземления.

Напряжение (LM338) = 1.2+1.2 x Reff / (R2+R3), где Reff — это сопротивление регулирующего контакта по отношению к заземлению.

Когда Reff понижается, выходное напряжение LM338 снижается, прекращая процесс зарядки.

Источник

Adblock
detector