Амплитуда колебаний напряжения трансформатора

Амплитуда колебаний напряжения трансформатора

Число витков в первичной обмотке трансформатора в 2 раза больше числа витков в его вторичной обмотке. Какова амплитуда колебаний напряжения на концах вторичной обмотки трансформатора в режиме холостого хода при амплитуде колебаний напряжения на концах первичной обмотки 50 В? (Ответ дать в вольтах.)

Напряжения на первичной и вторичной обмотках трансформатора в режиме холостого хода относятся как числа витков: Поскольку, согласно условию получаем, что амплитуда колебаний напряжения на концах вторичной обмотки в два раз меньше амплитуды колебаний напряжения на концах первичной обмотки и равна 25 В.

Число витков в первичной обмотке трансформатора в 2 раза меньше числа витков в его вторичной обмотке. Какова амплитуда колебаний напряжения на концах вторичной обмотки трансформатора в режиме холостого хода при амплитуде колебаний напряжения на концах первичной обмотки 50 В? (Ответ дать в вольтах.)

Напряжения на первичной и вторичной обмотках трансформатора в режиме холостого хода относятся как числа витков: Поскольку, согласно условию получаем, что амплитуда колебаний напряжения на концах вторичной обмотки в два раз больше амплитуды колебаний напряжения на концах первичной обмотки и равна 100 В.

Колебания напряжения на конденсаторе в цепи переменного тока описываются уравнением где все величины выражены в СИ. Емкость конденсатора равна Найдите амплитуду силы тока. (Ответ дать в амперах.)

Общий вид зависимости напряжения на конденсаторе в колебательном контуре: где — амплитудное значение напряжения. Сравнивая с находим, что Значение максимального заряда на обкладках конденсатора равно Амплитуда колебаний силы тока связана с частотой колебаний и максимальным значением заряда конденсатора соотношением Отсюда находим

Позвольте предложить, на мой взгляд, более простой способ решения. Известно, что в цепи переменного тока, в которой есть конденсатор, выполняется зависимость Im=Um/Xc, где под током и напряжением имеются ввиду их амплитудные значения, а Хс — емкостное сопротивление конденсатора, равное Хс=1/w*C. Подставляя 2-ую формулу в первую, окончательно имеем: Im=Um*w*C. Подставляя значения величин из условия, получаем значение амплитуды силы тока, которое совпадает с вашим.

P. S. Мой способ решения кажется мне более разумным по той причине, что обе формулы даны в учебнике по физике, в отличие от последней формулы в предложенном вами способе решения.

Но использованная в конце формула, конечно же, дается в школьном курсе. Ведь насколько я знаю, в этот момент в школьной физике уже начинают использовать производные. Формула следует из закона изменения заряда со временем при гармонических колебаниях и из того, что ток — это производная от заряда

Источник

Работа нагруженного трансформатора. Трансформаторы

В первичной обмотке, имеющей N1 витков, полная ЭДС индукции е1 равна N1e. Во вторичной обмотке полная ЭДС индукции е2 равна N2e (N2 — число витков этой обмотки). Отсюда следует, что

Обычно активное сопротивление обмоток трансформатора мало, и им можно пренебречь. В этом случае модуль напряжения на зажимах первичной обмотки примерно равен модулю суммарной ЭДС индукции:

При разомкнутой вторичной обмотке трансформатора ток в ней не идет, и имеет место соотношение

Читайте также:  Mp 130i импульсный трансформатор схема

Мгновенные значения ЭДС e1 и е2 изменяются синфазно (одновременно достигают максимума и одновременно проходят через нуль). Поэтому их отношение в формуле (5.2) можно заменить отношением действующих значений и этих ЭДС или, учитывая равенства (5.3) и (5.4), отношением действующих значений напряжений U1 и U2:

Величина К называется коэффициентом трансформации. Он равен отношению напряжений в первичной и вторичной обмотках трансформатора. При К > 1 трансформатор является понижающим, а при К

Трансформатор преобразует переменный электрический ток таким образом, что произведение силы тока на напряжение примерно одинаково в первичной и вторичной обмотках

1. Что такое коэффициент трансформации!

2. Что понижает или повышает трансформатор!

Источник

Амплитуда колебаний напряжения трансформатора

Компьютерная программа иллюстрирует принцип действия трансформатора.

Среди приборов переменного тока, нашедших широкое применение в технике, значительное место занимают трансформаторы . Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении электромагнитной индукции. Простейший трансформатор состоит из сердечника замкнутой формы из магнитомягкого материала, на который намотаны две обмотки: первичная и вторичная. Различают два режима работы трансформатора.

При прохождении переменного тока по первичной обмотке в сердечнике появляется переменный магнитный поток, который возбуждает ЭДС индукции в каждой обмотке. Сердечник концентрирует магнитное поле, так что магнитный поток существует практически только внутри сердечника и одинаков во всех его сечениях. В режиме холостого хода , то есть при разомкнутой цепи вторичной обмотки, ток в первичной обмотке весьма мал из-за большого индуктивного сопротивления обмотки. В этом режиме трансформатор потребляет небольшую мощность.

Если полную ЭДС индукции, возникающую в первичной обмотке (имеющей витков) обозначить как , а полную ЭДС индукции, возникающую во вторичной обмотке ( витков) как , то имеет место следующее соотношение:

Активное сопротивление обмоток трансформатора мало, и им можно пренебречь. В этом случае модуль напряжения на зажимах катушки приблизительно равен модулю ЭДС индукции.

Величина называется коэффициентом трансформации. При трансформатор является понижающим, а при – повышающим.

Если к концам вторичной обмотки присоединить нагрузку, потребляющую электроэнергию, то сила тока во вторичной обмотке уже не будет равна нулю. Появившийся ток создает в сердечнике свой переменный магнитный поток, который по правилу Ленца должен уменьшить изменения магнитного потока в сердечнике. Уменьшение амплитуды колебаний результирующего магнитного потока должно уменьшить и ЭДС индукции в первичной обмотке. Но это невозможно, так как модуль напряжения на зажимах первичной катушки по прежнему приблизительно равен модулю ЭДС индукции. Поэтому при замыкании цепи вторичной обмотки автоматически увеличивается сила тока в первичной обмотке. Его амплитуда возрастает таким образом, чтобы восстановить прежнее значение амплитуды колебаний результирующего магнитного потока. Мощность в первичной цепи при нагрузке трансформатора, близкой к номинальной, приблизительно равна мощности во вторичной цепи:

Таким образом, повышая с помощью трансформатора напряжение в несколько раз, мы во столько же раз уменьшаем силу тока (и наоборот).

Компьютерная программа моделирует два режима работы трансформатора.

  • Трансформатор на холостом ходу (ненагруженный).
  • Нагруженный трансформатор.

В режиме холостого хода модель позволяет проводить эксперимент, изменяя число витков первичной и вторичной обмотки трансформатора, напряжение на первичной обмотке (напряжение на вторичной обмотке изменяется автоматически, в соответствии с выбранными пользователем параметрами).

Читайте также:  Расшифровка схем соединений обмоток трансформатора

В режиме нагруженного трансформатора можно изменять число витков первичной и вторичной обмотки, напряжение на первичной обмотке, сопротивление нагрузки. Выводятся значения напряжения на вторичной обмотке, а также силы тока в первичной и вторичной обмотках.

Источник

Амплитуда колебаний напряжения трансформатора

Трансформатор представляет собой изготовленный из специального материала замкнутый сердечник, на который плотно намотаны две катушки. Первая катушка содержит 200 витков, а вторая – 1000 витков. К выводам первой катушки подключили источник переменного напряжения амплитудой 10 В и частотой 100 Гц. Выводы второй катушки разомкнуты (трансформатор не нагружен). Установите соответствие между физическими величинами и их значениями (в СИ).

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

А) Амплитуда напряжения на выводах второй катушки

Б) Частота изменения напряжения на выводах второй катушки

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Трансформатор представляет собой устройство, предназначенное для преобразования напряжения за счет явления электромагнитной индукции без изменения частоты.

Напряжения на первичной и вторичной обмотках трансформатора относятся как числа витков: Поскольку, согласно условию получаем, что амплитуда колебаний напряжения на концах вторичной обмотки в пять раз больше амплитуды колебаний напряжения на концах первичной обмотки и равна 50 В. (А — 2)

Частота напряжения на первичной и вторичной обмотке совпадают и равны 100 Гц. (Б — 3)

Источник

§ 3.3. Трансформатор

Трансформатором называется устройство, предназначенное для преобразования переменного тока одного напряжения в переменный ток другого напряжения той же частоты.

Впервые трансформаторы были использованы в 1878 г. русским ученым и изобретателем П. Н. Яблочковым (1847—1894) для питания изобретенных им «электрических свечей» — нового в то время источника света. Идея П. Н. Яблочкова была развита сотрудником Московского университета И. Ф. Усагиным, сконструировавшим более совершенные трансформаторы.

Устройство трансформатора

Трансформатор состоит из замкнутого стального сердечника-магнитопровода, на котором располагаются две или несколько обмоток, не имеюпа,их между собой электрического контакта (рис. 3.2).

Обмотка 1, к которой подводится электрическая энергия, называется первичной; обмотка 2, к которой присоединяются потребители электроэнергии 3 («нагрузка»), — вторичной.

Для уменьшения потерь от вихревых токов магнитопровод собирается из листов электротехнической стали толщиной 0,35 или 0,5 мм. Листы изолируются друг от друга тонкой бумагой или лаком. Графическое обозначение трансформатора в электрических схемах показано на рисунке 3.3.

Холостой ход трансформатора

Действие трансформатора основано на явлении электромагнитной индукции. Рассмотрим вначале процессы в трансформаторе с незамкнутой вторичной обмоткой (режим холостого хода).

Пусть к первичной обмотке трансформатора приложено гармонически изменяющееся напряжение:

Под действием этого напряжения в первичной обмотке возникает переменный ток i1. У реальных трансформаторов активное сопротивление первичной обмотки невелико по сравнению с ее индуктивным сопротивлением. Поэтому можно считать, что колебания силы тока i1 отстают по фазе от колебаний напряжения u1 на четверть периода, т. е. на π/2 (см. § 2.8):

Переменный магнитный поток, возбуждаемый током в первичной обмотке, совпадает по фазе с током и пронизывает витки обеих обмоток трансформатора:

где Фm — амплитуда магнитного потока. Сердечник из трансформаторной стали концентрирует магнитное поле, так что магнитный поток существует практически только внутри сердечника и одинаков во всех его сечениях.

Переменный магнитный поток наводит в первичной и вторичной обмотках ЭДС. Мгновенное значение ЭДС индукции е в любом витке первичной или вторичной обмотки одинаково и согласно закону Фарадея равно

где Ф’ — производная потока магнитной индукции по времени. Из выражения (3.3.3) следует, что

Здесь Em = ωФm — амплитуда ЭДС в одном витке.

В первичной обмотке, имеющей N1 витков, полная ЭДС индукции е1 = N1e, а во вторичной обмотке с числом витков N2 полная ЭДС e2 = N2e. Отсюда следует, что

Напряжение u1 и ЭДС е1, как вытекает из выражений (3.3.1) и (3.3.6), колеблются в противофазе:

При разомкнутой вторичной обмотке трансформатора тока в ней нет, поэтому имеет место соотношение

Мгновенные значения ЭДС е1 и e2 изменяются синфазно, т. е. в любой момент времени фазы их одинаковы. Поэтому отношение мгновенных ЭДС в формуле (3.3.7) можно заменить отношением амплитуд или действующих значений E1 и E2 этих ЭДС, а учитывая равенства (3.3.8) и (3.3.9), отношением действующих значений напрянсений:

Величина К называется коэффициентом трансформации. При К > I трансформатор является понижающим, а при К P2. Разность между потребляемой трансформатором мощностью Р1 и мощностью P2, потребляемой нагрузкой, представляет собой мощность, теряемую в трансформаторе. Потери мощности в трансформаторе (P1 — P2) состоят из двух частей: во-первых, это потери в обмотках трансформатора Р0 и, во-вторых, это потери в сердечнике Pс.

Мощность потерь в обмотках

где R1 и R2 — активные сопротивления первичной и вторичной обмоток. Мощность Р0 зависит от активного сопротивления обмоток и нагрузки трансформатора.

Потери в сердечнике состоят из потерь энергии при перемагничивании сердечника (потери на гистерезис) и потерь на нагревание сердечника вихревыми токами. Эти потери при постоянной частоте переменного тока зависят от максимального значения магнитного потока. Так как при данном напряжении U1 максимальное значение магнитного потока трансформатора остается неизменным, то потери в сердечнике можно считать не зависящими от нагрузки.

В трансформаторе отсутствуют вращающиеся части, и, следовательно, нет потерь на трение. Поэтому общая мощность потерь относительно мала.

Отношение мощности Р2, потребляемой нагрузкой, к мощности P1, потребляемой первичной обмоткой трансформатора, называется коэффициентом полезного действия трансформатора:

Так как Р1 = Р2 + Рo+ Рc, то коэффициент полезного действия трансформатора можно записать и так:

Из выражения (3.3.16) видно, что при недогрузке трансформатора P2 и Рo малы, а Рc, как было установлено, не зависит от нагрузки. Поэтому в этом случае КПД трансформатора низкий. При перегрузке Рo значительно возрастает (так как возрастают силы токов I1 и I2), и КПД снова мал. Лишь при номинальной нагрузке (т. е. при нагрузке, на которую трансформатор рассчитан) или близкой к ней КПД наибольший. У трансформаторов большой мощности КПД достигает 98— 99%.

При нагрузках, близких к номинальной, потери мощности в трансформаторе малы, и приближенно можно считать, что

При таких нагрузках сдвиги фаз близки к нулю и приближенно равны между собой (cos φ1 = cos φ2). Поэтому

т. е. силы токов в обмотках трансформатора приближенно обратно пропорциональны числу витков в обмотках.

Следует иметь в виду, что если соотношение оправдывается в широком диапазоне нагрузок, то соотношение удовлетворительно выполняется лишь при номинальных нагрузках.

Источник

Оцените статью
Adblock
detector
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ ЧИСЛОВЫЕ ЗНАЧЕНИЯ