Ардуино измерить напряжение батарейки

Тестер батареек на Ардуино с LCD 1602

Тестер батареек и аккумуляторов на Arduino Uno — один из самых простых проектов для которого потребуется минимум деталей. Представим два варианта данного устройства — на светодиодах для индикации заряда батарей, а также с использованием LCD дисплея для вывода информации. Подробная схема сборки проекта и программа для тестера на микроконтроллере Ардуино представлена далее на странице.

Первым делом необходимо предупредить, что на аналоговые порты плат Ардуино не следует подавать напряжение более 5 Вольт. Согласно описанию Arduino Uno, данного производителем, при большем напряжении микроконтроллер может выйти из строя. Если вам необходимо будет проверить заряд аккумулятора с напряжением более 5 Вольт, то можно использовать делитель напряжения на резисторах.

Тестер батареек и аккумуляторов на Ардуино

Для этого проекта нам потребуется:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • три светодиода и три резистора;
  • диод;
  • LCD дисплей;
  • макетная плата;
  • провода «папа-папа», «папа-мама».

Обратите внимание, что в приведенной схеме используется диод для защиты от неправильного подключения одноэлементной батарейки. Если у вас нет диода, то вместо него можно использовать обычный светодиод или обойтись без защиты. Соберите схему, как на картинке выше и загрузите в плату следующий скетч. Ссылка на архив с программой для тестера заряда батарей на Ардуино размещена ниже.

Скетч. Тестер батареек Ардуино своими руками

Пояснения к коду:

  1. заряд батареи дополнительно выводится на монитор порта Arduino IDE;
  2. в зависимости от заряда одноэлементной батарейки (аккумулятора), на макетной плате включается красный, желтый или зеленый светодиод.

Тестер батареек на Arduino с LCD дисплеем

Если у вас есть в наличии дисплей с I2C модулем, то можно собрать более сложный проект на Arduino Nano или Uno. Также для индикации заряда одноэлементных батарей можно использовать светодиодную шкалу, собрав тестер батареек на Arduino Uno и светодиодной шкале. Соберите схему, как на картинке выше и загрузите следующий скетч. Скачать две представленных программы можно по ссылке здесь.

Источник

Arduino: определение заряда аккумуляторов и вывод информации в консоль

Наверное, каждый, создавая собственного автономного робота, хотел определять уровень заряда аккумуляторов и выводить их на дисплей или в консоль. Эта функция в основном необходима для отладки, однако в некоторых случаях определение заряда — важная часть функционала робота. Сложность в выполнении этой задачи составляет ограничение максимального входного напряжения на аналогово-цифровом преобразователе (), а также огромные скачки полученного значения. В этом посте я хотел бы показать свой способ считывания напряжения с аккумуляторов и определение заряда.

В первую очередь необходимо припаять к штекеру питания два резистора по 1 кΩ вот этой схеме делителя напряжения:

Таким образом, если выходное напряжение полностью заряженных аккумуляторов не превышает 10В, то напряжение после делителя будет меньше 5В, а значит, будет адекватно распознаваться аналого-цифровым преобразователем.

Теперь необходимо подключить выход делителя к любому аналоговому входу на Arduino. В моем случае это ножка А5. Затем попробуем считать напряжение с батареек:

Получается непонятно что, так как мы забыли конвертировать значение в десятеричную систему счисления. Для этого делим все на 1024:

Теперь подбираем при помощи вольтметра коэффициент, при котором voltage будет примерно равно реальному напряжению:

Мы получили сильно прыгающее вверх-вниз напряжение, зачастую не схожее с требуемым. Для исправления этой ошибки добавляем низкочастотную фильтрацию с наиболее оптимальным для вашего проекта коэффициентом сглаживания:

Теперь осталось измерить напряжение на полностью заряженных аккумуляторах и полностью разряженных. В моем случае разница составляет ровно 1В.

Читайте также:  Акб 36 вольт минимальное напряжение

После этого необходимо найти заряд аккумулятора в процентах:

Нам осталось только перевести это в значок батарейки (или в квадратики, как у меня) и вывести в консоль:

Для просмотра результата рекомендую использовать PuTTY, т. к. она поддерживает любые кодировки, в отличие от обычного «монитора порта» в Arduino IDE.

Источник

Делаем тестер литий-ионных батарей c помощью Ардуино

Когда речь заходит о создании аккумуляторных батарей, литий-ионные элементы являются, без сомнения, одними из самых лучших. Но если вы используете старые батареи, например, от старого ноутбука, то, возможно, захотите провести тест емкости перед сборкой батарейного блока.

Поэтому сегодня мы покажем вам, как сделать Li-ion измеритель емкости, используя микроконтроллер Ардуино.

Шаг 1. Всё, что нам нужно

Ниже перечислим комплектующие для проекта:

  1. PCB (печатная плата);
  2. Силовой резистор;
  3. Резистор 10К;
  4. OLED (светодиодный дисплей)
  5. Ардуино
  6. Зуммер
  7. Разъемы для подключения винтовых клемм
  8. 40-контактный разъем/коннектор (или меньше)
  9. Транзистор IRFZ44N

Шаг 2. Что такое емкость?

Прежде чем делать наш Ардуино тестер, мы должны немного разобраться в том, что такое емкость. Единица для емкости — мАч или Ач.

Если вы посмотрите на любую литий-ионную емкость (см. фото выше), то на неё будет упомянута ее емкость — на рисунке 2600 мАч.

В основном, это означает, что если мы подключим нагрузку на нее, которая составит 2.6A, эта батарея будет работать в течение часа. Точно так же, если у меня есть аккумулятор емкостью 1000 мАч и нагрузка 2A, то он длительность составит 30 минут. Примерно это означают мАч или Ач.

Шаг 3. Практически невозможно

Но вычисление таким образом практически невозможно, потому что все мы знаем V = IR. Первоначально, напряжение батареи будет 4,2 В, если мы будем поддерживать постоянное сопротивление, будет протекать некоторый ток, протекающий через нагрузку. Но с течением времени напряжение батареи будет уменьшаться, а также наш ток. Это сделает наши вычисления намного сложнее, чем ожидалось, потому что нам нужно будет измерить ток и время для каждого раза.

В таком случае выполнения всех расчетов практически невозможно, поэтому здесь мы будем использовать Ардуино, которая будет измерять текущее время и напряжение, обрабатывать информацию и, в конце концов, давать нам пропускную способность.

Шаг 4. Наша схема

У нас был SPI OLED, который валялся без дела, поэтому мы преобразовали его в I2C и использовали. Если вы хотите узнать, как преобразовать SPI в OLED, то мы обязательно это разберем в ближайших уроках.

Схему проекта смотрите выше. И вот как работает эта схема. Сначала Arduino измеряет падение напряжения, создаваемое резистором 10 Ом, если выше 4,3 В, тогда она отключит высокое напряжение дисплея MOSFET, если оно меньше 2,9 В, оно отображает низкое напряжение и выключает MOSFET, а если находится между 4,3 В и 2,9 В, то она включит MOSFET. Батарея начнет разряжаться через резистор, начнется измерение тока, используя закон Ома. Ардуино также использует функцию Миллиса для измерения времени, а произведение тока и времени дает нам пропускную способность.

Шаг 5. Скетч для Ардуино

Вы можете взять код или скачать его ниже:

Шаг 6. Финальный результат

В итоге после тестирования вы можете начать процесс пайки на печатной плате. Рекомендуем использовать коннекторы, так как позже вам может понадобятся дисплей OLED или Arduino для другого проекта.

После пайки, когда вы подключаете мощность, всё может работать не так, как ожидалось. Возможно, потому что мы забыли добавить, так называемые, Pull Up резисторы на интерфейсе шины I2C, поэтому мы вернулись к коду и использовали встроенные резисторы Ардуино.

Теперь Ардуино тестер литий-ионных батарей работает отлично.

Источник

Измерение уровня заряда аккумулятора на Ардуино

Отслеживание уровня заряда аккумулятора или батареи является одной из основных задач при разработке автономных устройств. Особенно она актуальна для устройств, которые работают удалённо и сообщают о своём статусе, используя, например, GSM канал*. Даже когда устройство находится рядом с вами, индикация уровня заряда аккумулятора поможет сделать его использование более удобным. В данной статье мы рассмотрим простой способ отслеживания уровня заряда аккумулятора или батареи при помощи Ардуино.

Читайте также:  Напряжение в генераторе пежо 206

*Знакомые с GSM модулями могут возразить, что в их составе уже присутствуют средства мониторинга заряда аккумулятора, и не нужно изобретать велосипед. Справедливое замечание. Но при условии, что для GSM модуля не используется стабилизация напряжения, скажем, от 12-вольтового аккумулятора. В этом случае модуль не сможет оценить уровень заряда аккумулятора. Таким образом, не стоит преуменьшать актуальность данной темы.

Теория

Предлагаемый способ отслеживания уровня заряда основан на измерении напряжения источника питания. Возьмем, к примеру, литий-ионный аккумулятор. В процессе разрядки его напряжение изменяется от 4.2 В до 3 В. Выполняя периодические замеры напряжения и сопоставляя полученный результат с приведённым диапазоном 4.2. 3 В, мы можем оценить уровень заряда. Но не всё так однозначно. Дело в том, что напряжение аккумулятора при разряде изменяется не линейно. Это видно из графика разряда литий-ионного аккумулятора, который легко найти в google по запросу li-ion discharge graph:

Данный график позаимствован с сайта batteryuniversity. На нём отражён процесс разряда аккумулятора Panasonic NCR18650B 3200мАч разными токами от 0.2C до 2C. Как видите, напряжение аккумулятора изменяется более-менее линейно лишь при разряде большими токами. Здесь можно вспомнить математику и посчитать процент оставшегося заряда по линейной формуле. Но это, скорее, частный случай. Пожалуй, более актуальны случаи, когда устройство потребляет незначительные токи, поэтому ориентироваться мы будем на красную и синюю кривые.

Таким образом, чтобы получить наиболее точное представление об оставшемся заряде аккумулятора или батареи на основе напряжения, нужно иметь соответствующий график разряда.

Следующий момент, который я беру во внимание – это то, что высокая детализация уровня заряда (в тех же процентах, которые дают нам 100 значений) бывает нужна крайне редко. В большинстве случаев достаточно понимания: когда уровень заряда находится в «зелёной зоне», когда в «жёлтой», а когда нужно быть готовым к отключению устройства из-за разряда аккумулятора. Поэтому наиболее рациональным представляется подход, когда мы выделяем 3-4 пороговых напряжения и относительно них определяем уровень заряда. Грубо говоря, если напряжение литий-ионного аккумулятора больше 4 В, то заряд высокий; если меньше 3.2 В – аккумулятор вот-вот разрядится, а между этими двумя значениями выделяем еще несколько зон. Если необходимо выразить заряд именно в процентах – пожалуйста: выделяем 10 зон и показываем результат десятками (10%, 20% и т.д.).

Аналогичные графики разряда можно найти и для других элементов питания, смысл будет тот же.

Реализация

Итак, задача поставлена: необходимо измерять напряжение источника питания нашего устройства. Я бы выделил 2 возможных варианта реализации:

  • измерять напряжение, используя АЦП Ардуино;
  • воспользоваться датчиком напряжения, например, INA219.

Первый вариант хорош тем, что для него ничего не требуется. Разве что пара резисторов. А датчик напряжения – это уже дополнительный компонент. Зато он позволит более точно измерять напряжение. Кроме того INA219 измеряет потребляемый ток и мощность, поэтому имеет потенциал для дальнейшего развития в плане мониторинга питания (с его помощью можно построить ту же кривую разряда аккумулятора, определить его ёмкость, спрогнозировать время работы устройства), но это уже отдельная тема.

Вариант 1. Измерение напряжения при помощи Ардуино.

Все платы Ардуино имеют в своём составе АЦП. У популярных плат (UNO, NANO, MEGA2560) разрядность АЦП составляет 10 бит, у более продвинутых (Due, Zero) – 12 бит. АЦП позволяет измерять напряжение в диапазоне от 0 В до опорного напряжения Vref. Значение Vref в общем случае соответствует напряжению питания платы – 5 В или 3.3 В, но может быть привязано к внутреннему стабилизатору. Для лучшего понимания принципов использования АЦП предлагаю рассмотреть следующий скетч.

Загрузите скетч в Ардуино, соедините A0 с выводом 5V и откройте монитор порта. Вы должны увидеть следующий результат:

Этот скетч измеряет напряжение на входе A0 и выводит результат в монитор порта. Разрешение АЦП используемой мной Ардуино УНО составляет 10 бит, а значит, результатом измерений будет число от 0 до 1023 (2^10 значений). При этом значение 0 будет говорить об отсутствии напряжения, а максимальное значение – 1023 – о его равенстве (а так же превышении, что мы не будем рассматривать) опорному напряжению Vref, каким бы оно ни было. У меня в монитор порта выводится как раз число 1023. Поскольку опорным напряжением АЦП по умолчанию является напряжение питания Ардуино – 5 вольт, выдаваемые USB портом компьютера (разумеется, это не точное значение), можно утверждать, что напряжение на входе A0 тоже составляет 5 вольт.

Читайте также:  Стабилизатор напряжения для студии звукозаписи

Попробуем отсоединить A0 от вывода 5V и подсоединить к 3v3. Теперь у меня в монитор порта выводится значение 687. Зная опорное напряжение, нетрудно вычислить напряжение на A0:

Для получения более точного результата следует измерить напряжение, выдаваемое USB портом.

Если же вывод A0 соединить с «землёй», то в монитор порта будет выводиться значение 0.

Вернёмся к нашей задаче. Питание от аккумулятора не всегда предполагает наличие стабильного напряжения, которое может использоваться как опорное для АЦП. В таких случаях в качестве Vref следует использовать напряжение от внутреннего стабилизатора Ардуино. Для большинства плат, в том числе Ардуино УНО, это напряжение составляет 1.1 В. Это означает, что измеряемое напряжение необходимо понизить при помощи делителя, чтобы оно не превышало 1.1 В. Здесь нам помогут пара резисторов номиналом в несколько десятков-сотен кОм, включенные по следующей схеме:

Это простейший резистивный делитель напряжения. Он характеризуется коэффициентом передачи, который показывает, во сколько раз выходное напряжение будет меньше входного, то есть:

Сам коэффициент рассчитывается по следующей формуле:

Остаётся лишь подобрать номиналы резисторов таким образом, чтобы понизить напряжение аккумулятора до нужного нам уровня. Для измерения напряжения аккумулятора 18650 я выбрал номиналы 47k и 10k. Реальное сопротивление будет отличаться, поэтому их нужно обязательно измерить мультиметром. Выбранные мной номиналы дают коэффициент

0.175, что позволяет измерять напряжение до 1.1 В / 0.175 = 6,27 В. Ниже приведены схема, пример скетча, реализующий описанный функционал, и результат его работы. Предполагается, что Ардуино питается от аккумулятора, поэтому результаты выводятся на дисплей 1602, а не в Serial.

На фото видно, что результат измерения напряжения при помощи Ардуино и делителя не сильно отличается от того значения, что показывает мультиметр. Это хороший результат.

При подключении делителя я отказался от макетной платы в пользу пайки, чтобы избежать увеличения сопротивлений из-за плохого контакта.

Опорное напряжение, выдаваемое внутренним стабилизатором, не обязательно будет 1.1 В, и может отличаться от одного микроконтроллера к другому. Даташит допускает разброс от 1.0 до 1.2 В. Поэтому для получения более точных измерений можно вычислить значение Vref и использовать его в скетче при расчетах. Его легко найти путём измерения заранее известного напряжения (обозначим его как V(A0)):

Vref = V(A0) * 1024 / analogRead(A0)

Вариант 2. Использование датчика напряжения INA219.

После шаманства со всеми этими делителями и внутренними источниками опорного напряжения преимущество датчиков напряжения на базе специализированных микросхем очевидно. Они позволяют измерять напряжение (а некоторые ещё и потребляемый устройством ток) в широком диапазоне и с высокой точностью. INA219 – хороший пример такого датчика. Он потребляет не более 1мА, а в спящем режиме менее 15мкА, что весьма ценно при создании автономных устройств, в условиях энергосбережения. Подробное описание датчика и используемой далее библиотеки для работы с ним вы найдёте здесь: https://compacttool.ru/datchik-napryazheniya-i-toka-na-chipe-ina219

Для отслеживания уровня заряда аккумулятора 18650 при помощи INA219 и вывода результата на дисплей я соединил компоненты в соответствии со схемой:

В этот раз я решил выделить 10 уровней заряда, чтобы отображать его в процентах. Скетч и результат его работы ниже:

Заключение

Конечно, предложенный способ не претендует на высокую точность. Существуют специализированные микросхемы мониторинга питания, которые определяют оставшуюся ёмкость аккумулятора с учётом нагрузки и других параметров. Они находят применение в ноутбуках, телефонах и другой портативной технике. Но вряд ли вы найдёте что-то подобное в любительских проектах – не тот уровень. Таким образом, определение уровня заряда аккумулятора по напряжению – приемлемая альтернатива, не требующая серьёзных аппаратных или программных ресурсов.

Источник

Оцените статью
Adblock
detector