Частота колебаний пульсации выпрямленного напряжения в схеме двухполупериодного выпрямителя

Варианты схем двухполупериодных выпрямителей

Практически все электронные приборы работают от постоянного тока. Такой подход значительно снижает количество применяемых электронных компонентов, размер схемы и затраты на производство прибора.

Для преобразования переменного электрического напряжения в постоянное используются выпрямители. Статья даст подробное объяснение, что такое двухполупериодные выпрямители. Опишет их принцип работы, разновидности, основные преимущества и недостатки.

Назначение

Основное назначение однофазного двухполупериодного выпрямителя – это преобразование переменного тока в постоянный. Для того чтобы понять принцип действия такого выпрямителя, необходимо разобраться, что такое однополупериодное выпрямление.

Однополупериодный выпрямитель представляет собой устройство, которое состоит из трансформатора и одного диода (вентиля), подключенного ко вторичной обмотке трансформатора. Работает устройство следующим образом:

  1. Синусоидальный ток представляет собой цикл из 2 периодов: положительного и отрицательного.
  2. При протекании по цепи положительного полупериода, диод открывается и пропускает его дальше по цепи.
  3. При протекании отрицательного полупериода, диод не открывается и обрезает этот цикл.

Таким образом по цепи пропускается только ток с высокой пульсацией. Для того чтобы сгладить этот эффект, схема дополняется конденсатором с высокой емкостью. Основной недостаток такой схемы – большая потеря тока и необходимость использования мощных сглаживающих конденсаторов. Подобное устройство применяется, например, для зарядных блоков мобильных телефонов.

Двухполупериодный однофазный выпрямитель построен примерно по схожей схеме. Главное отличие заключается в добавлении 2-х и более полупроводниковых диодов для сглаживания обоих полупериодов. Существуют следующие разновидности подобных элементов:

Каждое устройство использует различное количество преобразователей, а значит имеет различный принцип работы.

Схема со средней точкой

Двухполупериодный выпрямитель со средней точкой предполагает наличие трансформатора с двумя вторичными обмотками, имеющими центральный вывод. Так же может использоваться трансформатор с одной вторичной обмоткой, но он будет обязательно иметь вывод из центра обмотки. Кроме того в составе схемы имеются 2 диода. Выпрямитель с нулевым выводом работает за счет образования разных по направленности ЭДС. Обе эти ЭДС равны по величине сформированного напряжения относительно центра или 0 точки. При работе такого трансформатора, ток на обоих полуобмотках сдвинут по фазе на 180 градусов.

Принцип работы данного выпрямителя следующий:

  1. На трансформаторе имеются выводы «w21» и «w22», которые имеют противоположные значения .
  2. К этим выводам подключаются аноды вентилей «vd1» и «vd2».
  3. Напряжение, прикладываемое к каждому диоду, имеет противоположную фазу («u21»–«u22» на схеме).
  4. За первый полупериод ток протекает через открытый диод «vd1». Через его анод протекает ток только с положительным потенциалом. В этот полупериод диод «vd2» находится в состоянии обратного смещения. Он заперт и не пропускает ток от обмотки «w22».
  5. Во время второго полупериода, ток с положительным потенциалом находится на аноде «vd2», открывая при этом диод. Диод пропускает через себя ток от обмотки «w22». Диод «vd1» при этом остается закрытым.

Двухполупериодная схема с нулевой точкой работает за счет отсутствия момента подмагничивания. Каждая половина вторичной обмотки работает в свой полупериод, а значит трансформатор находится в состоянии постоянной нагрузки.

Плюсы

У схемы с нулевым выходом есть преимущества только перед моделью однопериодного выпрямителя. Основные достоинства такой схемы:

  1. Во время работы осуществляется передача тока обоих потенциалов, тем самым сохраняется до 90% исходной энергии.
  2. 2 диода равномерно распределяют нагрузку, продлевая свой срок службы и заметно занижая нагрузку на всю схему.
  3. Схема двухполупериодного выпрямителя предполагает сглаженную пульсацию тока, без использования высоковольтных, емкостных конденсаторов.
Читайте также:  Регулятор напряжения маз 5440 где находится

Несмотря на ряд преимуществ, однофазные выпрямители с двумя диодами имеют свои недостатки, о которых будет рассказано ниже.

Минусы

Для работы такой сцепи обязательно необходим специальный трансформатор с 2 вторичными обмотками или одной разделенной, с нулевым выходом. Такие устройства сильно повышают затраты на производство высоковольтных, мощных приборов.

Также большим минусом является нагрузка обратным током. В схеме должны быть использованы диоды с номинальным напряжением до 1000 вольт и возможностью выдерживать температуру до +80 градусов. Если эти параметры не соблюдаются, то при закрытии диода будет формироваться повышенная температура и сопротивление. Превышения параметров приведет к пробою самого диода.

Следующим минусом является использование самого нулевого отвода. Подключение к нему предполагает только использования части доступной энергии, что сильно снижает потенциал таких устройств.

Диодный мост

Второй разновидностью является двухполупериодный мостовой выпрямитель. Данная модель наиболее распространена в цепях бытовых и промышленных электронных приборов. Состав электронного элемента:

  1. Трансформатор.
  2. 4 полупроводниковых диода.
  3. Конденсатор для сглаживания импульсов.
  4. Резистор как дополнительное сопротивление.

Работает устройство по мостовой схеме следующим образом:

  1. 4 полупроводниковых диода соединяются между собой в контур. Иными словами, они образуют пары.
  2. Одна сторона каждой пары соединена с выводами вторичной обмотки трансформатора.
  3. Две другие стороны соединены с цепью (нагрузкой). В случае с представленной схемой, нагрузкой является резистор «Rн».
  4. При формировании первого полупериода, диоды «vd1-vd4» открываются и пропускают ток к нагрузочному резистору Rн. Диодная пара «vd2-vd3» закрыта.
  5. Во время второго полупериода, 1 пара диодов (vd1-vd4) закрыта. В работу вступают диоды «vd2-vd3». Они открываются и перенаправляют ток к резистору Rн.

При такой работе остается эффект пульсации тока. Его сглаживают с помощью емкостного конденсатора.

Преимущества

Двухполупериодное мостовое выпрямление имеет одно неоспоримое преимущество перед схемами с меньшим количеством диодов. Оно заключается в величинах обратного выпрямленного тока и напряжения. Эти величины превышают те же параметры в других схемах в 2 и более раз. Тем самым, мостовая схема имеет значительно большее КПД.

Минусы

Недостатки диодного моста также заключены в количестве диодов. Каждые из 4 диодов сохраняют в закрытом положении величину обратного напряжения, которое равняется напряжению в однополупериодном выпрямителе. Тем самым, 4 диода не способствуют уменьшению нагрузки обратного тока на вторичную обмотку.

Несмотря на недостатки, схема мостового выпрямителя более распространенная. Она может монтироваться в качестве 4 диодов или в сборке. Сборка выглядит более практичным вариантом. Она занимает меньше места на печатной плате.

Сглаживание

Однофазный электрический двухполупериодный выпрямитель, независимо от того, сколько диодов он совмещает, требует дополнительного сглаживания выходного напряжения. Пульсация сильно влияет на работу самого устройства, для которого собран такой выпрямитель. Для сглаживания пульсации тока схема выпрямления дополняется фильтрами. Они могут быть собраны из:

  1. Высокоемкостного конденсатора. Такой фильтр является емкостным или «С-фильтром». В момент открытия диода, конденсатор заполняется током и играет роль емкости. В момент закрытия диода, происходит постепенная разрядка емкости, тем самым сглаживается напряжение без каких-либо скачков.
  2. Катушки индуктивности. Катушка индуктивности в качестве фильтра может использоваться в дополнение к конденсатору или вместо него. Работает такой фильтр по принципу отсутствия мгновенного изменения тока на катушке. При прохождении положительной полуволны по катушке, значение тока увеличивается плавно и медленно. При изменении полуволны на отрицательное значение, ток в катушке меняется с запаздыванием, что значительно снижает резкость пульсации.

При проектировании диодных выпрямителей учитывается нагрузка последующих элементов цепи. Так, если сопротивление после выпрямителя значительно малое, то использование емкостного фильтра нецелесообразно. При малой нагрузке потребуется более емкостный конденсатор. Таким образом для подобных схем с малым сопротивлением, более рационально использовать индуктивный фильтр.

Читайте также:  35кв предохранитель трансформатора напряжения

Расчет значения диодов

Диоды в двухполупериодных выпрямителях должны выдерживать нагрузку переменным током, нагревом, обратным напряжением. При подборе диода необходимо учесть:

  1. Выходное напряжение до диода должно быть выше на 15–25% необходимого значения. Например, если требуется снять 12 вольт постоянного напряжения, то вторичная обмотка трансформатора должна выдавать не менее 15–17 вольт.
  2. Рабочий порог тока должен быть в полтора-два раза выше тока выпрямителя. Максимальный ток каждого диода в цепи можно найти с использованием следующей формулы:
  3. Выведенную по формуле величину можно использовать для определения значения обратного напряжения в состоянии закрытия. Данное значение должно быть в два раза больше выходного напряжения трансформатора, иначе возможен обратный p-n пробой. Делается это по такой формуле:

Также стоит учитывать материал, который используется в качестве полупроводника. Кремневые элементы более устойчивы к нагрузке обратным током и способны работать при температуре до +150 градусов. Германиевые менее устойчивы, их устойчивость к обратному напряжению составляет около 400 вольт.

Заключение

Однофазная схема двухполупериодного выпрямителя используется практически во всех современных приборах. Такие элементы более дешевые, устойчивые к нагрузкам, позволяют применять диодные сборки, уменьшая при этом общий размер цепи. Так же такие схемы легко проектировать, ремонтировать и дополнять самостоятельно, зная только принцип работы этих устройств.

Видео по теме

Источник

Двухполупериодный выпрямитель — однофазные, трехфазные, мостовые

Двухполупериодный выпрямитель более распространен, чем однополупериодный, это связано с многочисленными преимуществами такой схемы. Чтобы объяснить, в чем именно заключается преимущество, следует обратиться к теоретическим основам электротехники.

В первую очередь рассмотрим отличие двухполупериодного выпрямителя от однополупериодного, для этого нужно понять принцип работы каждого из них. Примеры схем с осциллограммами дадут наглядное представление о преимуществах и недостатках этих устройств.

Однополупериодный преобразователь

Ниже приведена типичная схема подобного устройства с минимумом элементов.

Схема: простейший преобразователь

Обозначения:

  • Tr – трансформатор;
  • DV- вентиль (диод);
  • Cf – емкость (играет роль сглаживающего фильтра);
  • Rn – подключенная нагрузка.

Теперь рассмотрим осциллограмму в контрольных точках U1, U2 и Un.

Осциллограмма, снятая в контрольных точках U1, U2 и Un

  • в контрольной точке U1 отображается диаграмма снятая на входе устройства;
  • U2 – диаграмма перед емкостным сглаживающим фильтром;
  • Un – осциллограмма на нагрузке.

Временная диаграмма наглядно показывает, что после вентиля (диода) выпрямленное напряжение представляется в виде характерных импульсов, состоящих из положительных полупериодов. Когда происходит такой импульс, накапливается заряд емкостного фильтра, который разряжается во время отрицательного полупериода, это позволяет несколько сгладить пульсации.

Недостатки такой схемы очевидны — это низкий КПД, в следствии высокого уровня пульсаций. Но несмотря на это, устройства такого типа находят свое применение в цепях с низким токопотреблением.

Принцип действия двухполупериодной схемы

Рассмотрим два варианта реализации двухполупериодного преобразователя (выпрямителя): балансный и мостовой. Схема первого показана на рисунке ниже.

Простейший неуправляемый балансный преобразователь на двух диодах с использованием трансформатора со средним выводом

Используемые элементы:

  • Tr – трансформатор, у которого имеются две одинаковые вторичные обмотки (или одна с отводом по середине);
  • DV1 и DV2 – вентили (диоды);
  • Cf – емкостной фильтр;
  • Rn – сопротивление нагрузки.

Приведем сразу для наглядности осциллограмму в контрольных точках.

Диаграмма прибора балансного типа

  • U1 – осциллограмма на входе;
  • U2 – график перед емкостным фильтром;
  • Un – диаграмма на выходе устройства.

Данная схема — это два совмещенных однополупериодных преобразователя, то есть на два раздельных источника приходится одна общая нагрузка. Результат работы такого устройства наглядно демонстрирует график U2. Из него видно, что в процессе используются оба полупериода, что и дало название этим преобразователям.

Читайте также:  Можно ли подключать счетчик под напряжением

Осциллограмма наглядно демонстрирует преимущества такого устройства, а именно, следующие факты:

  • частота пульсаций на выходе устройства удваивается;
  • уменьшение «провалов» между импульсами допускает использование меньшей фильтрующей емкости;
  • двухтактный преобразователь обладает большим КПД, чем однополупериодный.

Теперь рассмотрим мостовой тип, он изображен на рисунке ниже.

Схема: Пример использования диодного моста

Осциллограмма устройства мостового типа практически не отличается от балансного, поэтому приводить ее нет смысла. Основное преимущество такой схемы – нет необходимости использовать более сложный трансформатор.

Видео: Двухполупериодный выпрямительный мост

Преобразователи, где используется полупроводниковый диодный мост, широко применяются как в электротехнике (например, в аппаратах для сварки, где номинальный ток может доходить до 500 ампер), так и радиоэлектронике, в качестве источника для слаботочных цепей.

Заметим, что помимо полупроводниковых можно использовать и вакуумные диоды – кенотроны (ниже показан пример схемы такого устройства).

Собственно, представленная схема – это классическая реализация балансного преобразователя двухполупериодного типа. На сегодняшний день вакуумные диоды практически не применяются, их заменили полупроводниковые аналоги.

Как организовать двухполярное питание

Сочетая балансную схему и мостовую, можно получить преобразователь, который будет давать на выходе двухполярное питание с общей (нулевой) точкой. Причем, для одного она будет отрицательной, а для другого – положительной. Такие устройства широко применяются в БП для цифровой радиотехнике.

Схема: пример преобразователя с двухполярным выходом

Как реализовать удвоение напряжения

Ниже представлена схема, позволяющая получить на выходе устройства напряжение, вдвое выше исходного.

Схема с удвоением напряжения

Для такого устройства характерно, что два конденсатора заряжаются в разные полупериоды, а поскольку они расположены последовательно, то, по итогу, на «Rn» суммарное напряжение будет вдвое выше, чем на входе.

В преобразователе с таким умножителем можно применять трансформаторы с меньшим напряжением вторичной обмотки.

Использование операционных усилителей

Как известно, у диодов вольтамперная характеристика нелинейная, создавая однофазный прецизионный (высокоточный) выпрямитель двухполупериодного типа на микросхеме ОУ, можно существенно снизить погрешность. Помимо этого, имеется возможность создать преобразователь, позволяющий стабилизировать ток на нагрузке. Пример схемы такого устройства показан ниже.

Схема: простой стабилизатор на операционном усилителе

На рисунке изображен простейший стабилизатор тока. Используемый в нем ОУ — это управляемый по напряжению источник. Такая реализация позволяет добиться, чтобы ток на выходе преобразователя не зависел от потери напряжения на нагрузке Rн и диодном мосту D1-D4.

Если требуется стабилизация напряжения, схему преобразователя можно незначительно усложнить, добавив в нее стабилитрон. Он подключается параллельно сглаживающей емкости.

Кратко об управляемых преобразователях

Нередко требуется управлять напряжением на выходе преобразователя, не изменяя входное. Для этой цели наиболее оптимальным будет применение управляемых вентилей, пример такой реализации показан ниже.

Простой тиристорный преобразователь (на управляемых вентилях)

Трехфазный выпрямитель

Мы рассматривали различные реализации однофазных двухполупериодных преобразователей, но подобные устройства используются и для трехфазных источников. Ниже, в качестве примера, показано устройство, созданное по схеме Ларионова.

Пример реализации схемы Ларионова Осциллограмма на выходе схемы Ларионова

Как показывает расположенный выше график, реализация мостовой схемы между парами фаз позволяет получить на выходе незначительные пульсации. Благодаря этому фильтрующую емкость можно существенно снизить, или вообще обойтись без нее.

Проектирование

Расчет даже простого двухполупериодного преобразователя является непростой задачей. Существенно упростить ее можно используя специальное программное обеспечение. Мы рекомендуем остановить выбор на программе Electronics Workbench, которая позволяет выполнить схематическое моделирование аналоговых и цифровых электрических устройств.

Смоделировав в этой программе двухполупериодный выпрямитель можно получить наглядное представление о принципе его работы. Встроенные формулы позволяют рассчитать максимальное обратное напряжение для диодов, оптимальную емкость гасящего конденсатора и т.д.

Источник

Оцените статью
Adblock
detector