Чему равен коэффициент усреднения для синусоидальной формы напряжения

Чему равен коэффициент усреднения для синусоидальной формы напряжения

Цепи несинусоидального периодического тока

Цепями периодического несинусоидального тока называются цепи токи в ветвях которых или напряжения на ветвях которых носят несинусоидальный периодический характер. Причинами возникновения в электрических цепях несинусоидальных периодических токов являются

1.Несовершенство (неидеальность) источников синусоидальных напряжений и токов.

2. Наличие в ветвях эл. цепей генераторов напряжений и токов специальной формы ( прямоугольной, пилообразной, трапециедальной и т.п.)

3. Наличие нелинейных элементов в ветвях эл. цепей.

1. Представление несинусоидальных напряжений и токов рядами Фурье

Из курса математики известно, что любую несинусоидальную периодическую функцию F ( w t ) удовлетворяющую условиям Дирихле, т.е. имеющую за полный период конечное число максимумов, минимумов и разрывов первого рода, можно представить в виде ряда Фурье

где К=1, 2, 3….или представить в виде суммы бесконечного числа гармонических составляющих с частотами целыми и кратными основной частоте w . При этом все амплитудные коэффициенты ряда определяются формулами Эйлера -Фурье

; ;.

Для основных типов периодических функций, имеющих прямоугольную, треугольную, трапециевидную и др. формы, выражения для коэффициентов ряда Фурье приводятся в справочниках. Примеры разложений несинусоидальных периодических сигналов типовых форм приведены на рис.10.1.

В тех случаях, когда представить аналитически несинусоидальную функцию не представляется возможным или она задана в виде графика (или осциллограммы), амплитудные коэффициенты ряда можно получить графо-аналитически.

Этот метод основан на замене определенного интеграла суммой конечного числа слагаемых. Для этого период функции f( w t)=f(x) разбивается на n равных отрезков D X=2 p /n, как показано на рис.10.2. и находятся значения функции f(x) в середине каждого интервала.

После этого вычисляют коэффициенты ряда по формулам

; ; ,

где f p (x), Cos p kx , Sin p kx -значение функции f(x), Cos kx и Sin kx в середине р-го интервала или

f p (x)= f(x) Ѕ x=(p-0.5) D x, Cos p kx= Coskx Ѕ x=(p-0.5) D x, Sin p kx= Sinkx Ѕ x=(p-0.5) D x.

После тривиальных преобразований ряд (10.1) можно переписать в виде

где , .

Таким образом после разложения аналитического или графо-аналитического периодические несинусоидальные ток и напряжение можно представить в виде

i = I 0 + I 1m sin( w t + y i 1 ) + I 2m sin(2 w t + y i 2 ) + ј + I rm sin(k w t + y i k ))+ ј , (10.3)

u = U 0 + U 1m sin( w t + y u1 ) + U 2m sin(2 w t + y u2 ) + ј + U km sin(k w t + y uk ))+ ..10.4)

Первыe члены рядов (10.3) и (10.4) ( I 0, U 0 ) называются постоянными составляющими или нулевыми гармоникми. Вторые члены I 1m sin( w t + y i 1 ) и U 1m sin( w t + y u1 ) имеют частоту равную частоте несинусоидальной периодической функции f( w t ) и называются первыми или основными гармоническими составляющими (коротко — гармониками). Остальные члены ряда вида A k sin( k w t + y k ) имеют частоты в целое число раз k больше частоты основной гармоники и называются высшими гармоническим составляющими или гармониками . Каждая высшая гармоника в отдельности именуется по номеру k , т.е. вторая гармоника, третья гармоника и т.д.

2. Мгновенные, средние и действующие значение несинусоидальных периодических величин.

Выражение (10.3) и (10.4) характеризуют мгновенные значения несинусоидальных тока и напряжения.

При несинусоидальных периодических токах и ЭДС в электрической цепи возможно ввести понятия действующих значений аналогично тому, как это было сделано для синусоидальных величин.

Действующее значение тока I определяется через мгновенные значения как

Если представить периодический несинусоидальный ток в виде (10. 3 ) и подставить в (10.5), то после интегрирования получим

Следовательно, действующее значение несинусоидального периодического тока равно корню квадратному из суммы квадратов постоянной составляющей и действующих значений всех гармоник.

Проведя аналогичные выкладки, можно получить выражения для действующих значений ЭДС и падения напряжения в виде

Средние за период значения несинусоидальных напряжений и токов определяются интегралом за период от соответствующего мгновенного значения и если последние представлены в виде соответственно ( 10. 3 ) и (10.4 ), то

Читайте также:  Перепад напряжения в аноде

Как видно, средние за период значения несинусоидальных периодических величин равны их постоянным составляющим.

Средние по модулю или средние за положительный полупериод значения несинусоидальных напряжений и токов определяются интегралом за период от соответствующего мгновенного значения и если последние представлены в виде соответственно (10. 3 ) и (10.4 ), то

3. Оценка формы кривых несинусоидальных периодических величин

Как уже упоминалось выше, реальные источники электрической энергии в силу конструктивных особенностей формируют ЭДС и токи, отличающиеся от синусоидальных. Чаще всего эти величины симметричны, т.к. симметрична конструкция электромеханических генераторов, и не содержат четных гармоник.

Для оценки формы симметричных кривых используют коэффициенты формы k f , амплитуды k A и искажений k d .

Под коэффициентом формы k ф понимают отношение действующего значения к среднему значению, взятому за положительную полуволну, т.е.

Для синусоидальных величин k ф » 1.11.

Под коэффициентом амплитуды k A понимают отношение амплитудного значения несинусоидальной величины к действующему, т.е.

(для синусоиды это значение равно 1.414)

Коэффициент искажений k и это отношение действующего значения основной гармоники к действующему значению несинусоидальной кривой, т.е.

Поскольку идеальных синусоидальных величин практически не бывает, то в технике существует понятие практически синусоидальных кривых. Форма кривой считается практически синусоидальной, если все ее ординаты отличаются от ординат первой гармоники не более, чем на 5%. При этом количество контрольных точек должно быть не менее 12.

4. Мощность в цепях несинусоидального тока

Определим теперь среднюю мощность P в цепи при несинусоидальных токах и напряжениях. Она всегда может быть выражена в виде

Подставляя в это выражение напряжение и ток, представленные выражениями (10. 3 ) и ( 10. 4 ), получим

P=U 0 I 0 + U 1 I 1 Cos j 1 +…+ U k I k Cos j k +…,

где j k = y uk — y i k -фазовый сдвиг между к-ми гармониками напряжения и тока.

Из выражения (10.7) следует, что средняя или активная мощность в цепи с несинусоидальными токами и напряжениями равна сумме средних или активных мощностей отдельных гармоник .

По аналогии с цепями синусоидального тока можно ввести понятие полной или кажущейся мощности как произведение действующих значений тока и напряжения S = UI , тогда отношению P /( UI ) можно придать смысл коэффициента мощности cos j э .

Выражение нормально справедливо для некоторой электрической цепи синусоидального тока, в которой протекает ток с действующим значением I и существует падение напряжения U . При этом в цепи выделяется активная мощность P . Следовательно, при изучении некоторых явлений несинусоидальные токи и напряжения, не содержащие постоянных составляющих, можно заменить эквивалентными им по действующему значению синусоидальными со сдвигом фаз между ними j э , соответствующим коэффициенту мощности несинусоидальных величин .

Для цепи несинусоидального тока реактивную мощность определить формально по аналогии с активной мощностью в виде

Q = U 1 I 1 sin j 1 + U 2 I 2 sin j 2 + ј + U k I k sin j k + FACE=»Symbol» SIZE=4>ј

Без доказательства отметим, что в цепях несинусоидального тока не существует связи между активной, реактивной и полной мощностью в виде треугольника мощностей , т.е..

5. Расчет линейных ЭЦ с источниками периодических несинусоидальных напряжений и токов

Если все элементы электрической цепи с несинусоидальными токами и напряжениями линейны, т.е. параметры элементов не зависят от токов и падений напряжения, то анализ электромагнитных процессов в них можно проводить, используя разложение в ряды Фурье.

Расчет цепи при несинусоидальных токах проводится аналогично расчету при синусоидальных, но он должен выполняться отдельно для каждой гармоники, т.е. алгоритм расчета следующий:

-представить действующую в цепи ЭДС или ток рядом Фурье

-любыми методами расчета цепей синусоидального тока произвести расчет отдельно для каждой гармоники спектра;

-по полученному спектру искомых величин найти требуемые значения.

Пусть требуется найти активную мощность в цепи на рис.10.3 , где приложенное напряжение равно u ( t )=10+20sin(1000 t — 30 ° )+5sin(3000 t +45 ° ) В, а параметры элементов R = 20 Ом, C = 50 мкФ и L = 5 мГн.

Спектр приложенного напряжения содержит постоянную составляющую или нулевую гармонику, а также первую и третью гармоники.

Читайте также:  Как настроить регулятор напряжения с алиэкспресс

Реактивные сопротивления цепи зависят от частоты. Для k -й гармоники их можно представить через сопротивления на частоте основной гармоники в виде

X Lk =k w 1 L=kX L1 ; X Ck =1/k w 1 C=X c1 /k;

где x L 1 = w 1 L = 5 Ом и x C 1 = 1/( w 1 C ) = 20 Ом — индуктивное и емкостное сопротивления на частоте основной гармоники. При расчете реактивных сопротивлений можно формально считать постоянную составляющую нулевой гармоникой. При этом x L 0 = 0, а x C 0 = µ , что соответствует отсутствию этих элементов и вполне согласуется с теорией цепей постоянного тока, где в статических режимах реактивных элементов нет.

Общее комплексное сопротивление цепи на частоте k -й гармоники будет

Подставляя в это выражение значения k = 0, 1, 3, получим значения общих комплексных сопротивлений на всех гармониках в виде Z 0 = 20 Ом ; Z 1 = 10 — j 5 Ом ; Z 3 = 2+ j 9 Ом . Из этих выражений видно, что комплексные сопротивления на разных частотах могут иметь реактивную составляющую разного знака. Отсюда комплексные значения токов — I 0 = U 0 / Z 0 = 10/20 = 0.5 А;

m 1 = m 1 / Z 1 = 20 e — j 30 ° /(10 — j 5) = 1.78 e — j 3.4 ° А; m 3 = Um 3 / Z 3 = 5 e j 45 ° /(2+ j 9) = 0.54 e — j 32.4 ° А.

Полученные комплексные значения составляющих спектра токов можно представить рядом Фурье в виде

i = 0.5+1.78sin(1000 t — 3.4 ° )+0.54sin(1000 t — 32.4 ° ) А.

Теперь можно определить активную мощность в цепи как

P=U 0 I 0 + U 1 I 1 Cos j 1 + U 3 I 3 Cos j 3 =

10 ґ 0.5+ (20 ґ 1.78/2) ґ Cos[-30 o –(-3.4 o )]+ (5 ґ 0.54/2) ґ Cos[45 o –(-32.4 o )]=22.2 Вт

Источник

Среднее и действующее значения синусоидально изменяющейся величины

Среднее значение

Под средним значением синусоидально изменяющейся величины понимают ее среднее значение за полпериода.

Среднее значение тока:

т. е. среднее значение синусоидального тока составляет 2/π = 0,638 от амплитудного. Аналогично, Eср = 2Ем/π ; Ucp = 2Uм/π.

Действующее значение

Широко применяют понятие действующего значения синусоидально изменяющейся величины (его называют также эффективным или среднеквадратичным).

Действующее значение тока:

Следовательно, действующее значение синусоидального тока равно 0,707 от амплитудного. Аналогично

Можно сопоставить тепловое действие синусоидального тока с тепловым действием постоянного тока, текущего то же время по тому же сопротивлению.

Количество теплоты, выделенное за один период синусоидальным током,

Выделенная за то же время постоянным током теплота равна RI 2пост Т. Приравняем их:

Таким образом, действующее значение синусоидального тока I численно равно значению такого постоянного тока, который за время, равное периоду синусоидального тока, выделяет такое же количество теплоты, что и синусоидальный ток.

Большинство измерительных приборов показывает действующее значение измеряемой величины.

Источник

Параметры переменного напряжения

Как вы помните из предыдущей статьи, переменное напряжение — это напряжение, которое меняется со временем. Оно может меняться с каким-то периодом, а может быть хаотичным. Но не стоит также забывать, что и переменное напряжение обладает своими особенными параметрами.

Среднее значение напряжения

Среднее значение переменного напряжения Uср — это, грубо говоря, площадь под осциллограммой относительно нуля за какой-то промежуток времени. Чтобы это понять, давайте рассмотрим вот такую осциллограмму.

Например,чему равняется среднее значение напряжения за эти два полупериода? В данном случае ноль вольт. Почему так? Площади S1 и S2 равны. Но все дело в том, что площадь S2 берется со знаком «минус». А так как площади равны, то в сумме они дают ноль: S1+(-S2)=S1-S2=0. Для бесконечного по времени синусоидального сигнала среднее значение напряжения также равняется нулю.

То же самое касается и других сигналов, например, двухполярного меандра. Меандр — это прямоугольный сигнал, у которого длительности паузы и импульса равны. В этом случае его среднее напряжение также будет равняться нулю.

Средневыпрямленное значение напряжения

Чаще всего используют средневыпрямленное значение напряжения Uср. выпр. То есть площадь сигнала, которая «пробивает пол» берут не с отрицательным знаком, а с положительным.

средневыпрямленное значение напряжения будет уже равняться не нулю, а S1+S2=2S1=2S2. Здесь мы суммируем площади, независимо от того, с каким они знаком.

Читайте также:  Отключение заряда при достижении напряжения

На практике средневыпрямленное значение напряжения получить легко, использовав диодный мост. После выпрямления синусоидального сигнала, график будет выглядеть вот так:

Для того, чтобы примерно узнать, чему равняется средневыпрямленное напряжение, достаточно узнать максимальную амплитуду синусоидального сигнала Umax и сосчитать ее по формуле:

Среднеквадратичное значение напряжения

Чаще всего используют среднеквадратичное значение напряжения или его еще по-другому называют действующим. В литературе обозначается просто буквой U. Чтобы его вычислить, тут уже простым графиком не отделаешься. Среднеквадратичное значение — это значение постоянного напряжения, который, проходя через нагрузку (скажем, лампу накаливания), выделяет за тот же промежуток времени такое же количество мощности, какое выделит в этой нагрузке переменное напряжение. В английском языке среднеквадратичное напряжение обозначается так: RMS (rms) — root mean square.

Связь между амплитудным и среднеквадратическим значением устанавливается через коэффициент амплитуды Ka:

Вот некоторые значения коэффициента амплитуды Ka для некоторых сигналов переменного напряжения:

Более точные значения 1,41 и 1,73 — это √2 и √3 соответственно.

Как измерить среднеквадратичное значение напряжения

Для правильного замера среднеквадратического значения напряжения у нас должен быть мультиметр с логотипом T-RMS. RMS — как вы уже знаете — это среднеквадратическое значение. А что за буква «T» впереди? Думаю, вы помните, как раньше была мода на одно словечко: «тру». «Она вся такая тру…», «Ты тру или не тру?» и тд. Тру (true) — с англ. правильный, верный.

Так вот, T-RMS расшифровывается как True RMS — «правильное среднеквадратическое значение». Мои токоизмерительные клещи могут замерять этот параметр без труда, так как на них есть логотип «T-RMS».

мультиметр с True RMS

Проведем небольшой опыт. Давайте соберем вот такую схемку:

Выставим на моем китайском генераторе частоты треугольный сигнал с частотой, ну скажем, 100 Герц

генератор частоты

А вот осциллограмма этого сигнала. Внизу, в красной рамке, можно посмотреть его параметры

треугольный сигнал

И теперь вопрос: чему будет равно среднеквадратическое напряжение этого сигнала?

Так как один квадратик у нас равняется 1 Вольт (мы это видим внизу осциллограммы в красной рамке), то получается, что амплитуда Umax этого треугольного сигнала равняется 4 Вольта. Для того, чтобы рассчитать среднеквадратическое напряжение, мы воспользуемся формулой:

Итак, смотрим нашу табличку и находим интересующий нас сигнал:

Для нас не важно, пробивает ли сигнал «пол» или нет, главное, чтобы сохранялась форма сигнала. Видим, что наш коэффициент амплитуды Ka= 1,73.

Подставляем его в формулу и вычисляем среднеквадратическое значение нашего треугольного сигнала

Проверяем нашим прибором, так ли оно на самом деле?

Супер! И в правду Тrue RMS.

Замеряем это же самое напряжение с помощью моего китайского мультиметра

Он меня обманул :-(. Он умеет измерять только среднеквадратическое значение синусоидального сигнала, а у нас сигнал треугольный.

Самый интересный сигнал в плане расчетов — это двуполярный меандр, ну тот есть тот, который «пробивает пол».

Его амплитудное Umax, средневыпрямленное Uср.выпр. и среднеквадратичное напряжение U равняется одному и тому же значению. В данном случае это 1 Вольт.

Вот вам небольшая картинка, чтобы не путаться

среднее, среднеквадратичное и пиковое значения напряжения

  • Сред. — средневыпрямленное значение сигнала. Это и есть площадь под кривой
  • СКЗ — среднеквадратичное напряжение. Как мы видим, для синусоидальных сигналов, оно будет больше, чем средневыпрямленное.
  • Пик. — амплитудное значение сигнала
  • Пик-пик. — размах или двойная амплитаду. Или иначе, амплитуда от пика до пика.

Так что же все-таки показывает мультиметр при измерении переменного напряжения? Показывает он НЕ амплитудное, НЕ среднее и НЕ среднее выпрямленное напряжение, а среднее квадратическое, то есть действующее напряжение! Об этом всегда помним.

Источник

Оцените статью
Adblock
detector