Что будет при неправильном подключении трансформатора тока

Последствия при перегрузке трансформаторов тока (реальный пример)

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

В сегодняшней статье я хотел бы поделиться с Вами информацией по перегрузке трансформаторов тока и последствиями, возникающими при этом явлении.

В качестве примера я сошлюсь на реальный случай, который произошел буквально на днях на одной из распределительных подстанций.

В общем, дело было так. Низковольтная распределительная подстанция, щит 220 (В).

Прошу обратить внимание на то, что трехфазные сети с изолированной нейтралью и линейным напряжением 220 (В) и 500 (В) все еще используются у нас на производстве, поэтому особо не удивляйтесь.

На одном из фидеров ведется коммерческий учет электроэнергии с помощью счетчика ПСЧ-4ТМ.05МК.16, который подключен через два трансформатора тока ТОП-0,66 с коэффициентом трансформации 50/5. Сейчас про схему подключения я говорить не буду — на эту тему читайте отдельную статью: схемы подключения счетчиков электрической энергии через трансформаторы тока.

Для контроля тока нагрузки в фазе А подключен щитовой амперметр типа Э30, откалиброванный на коэффициент трансформации 50/5.

Вот принципиальная однолинейная схема этого присоединения.

Вот графики нагрузок за последние 2 месяца: сентябрь и октябрь. Эти данные я выгрузил из 30-минутных профилей мощности данного электросчетчика.

Средняя нагрузка за сентябрь составила 8,04 (А), максимальная нагрузка — 43,2 (А).

Средняя нагрузка за октябрь составила 11,7 (А), максимальная нагрузка — 103,05 (А).

Ничего не предвещало беды, пока потребитель однажды резко не увеличил потребляемую мощность. Как видите, с середины октября нагрузка стала частенько превышать 50 (А). Дело в том, что в это время потребитель приобрел и установил какой-то мощный станок. Соответственно, нагрузка на фидере резко возросла и порой превышала более 100% от номинального первичного тока наших ТТ.

Но всем известно, что у трансформаторов тока имеется некоторая перегрузочная способность и он способен кратковременно выдерживать некоторое увеличение нагрузки.

Существует единственный и действующий ГОСТ 7746-2001, по которым изготавливают трансформаторы тока и в котором упоминается про их допустимую перегрузку. В п.6.6.2 этого ГОСТа говорится следующее:

А вот эта самая таблица 10 (для наглядности я ее разбил на несколько частей).

Как видите, наибольший рабочий первичный ток не у всех ТТ превышает номинальный.

Чуть ниже по тексту в этом ГОСТе имеется примечание о том, что допускается кратковременно увеличивать первичный ток трансформаторов тока на 20% по отношению к его наибольшему рабочему первичному току, но по согласованию с производителем и не более 2 часов в неделю.

В нашем же случае потребитель ничего не согласовывал, а просто увеличил первичный ток ТТ даже не на 20%, а более, чем на 100%, что и привело к следующим последствиям.

Повышенный ток вызвал значительный нагрев обмоток ТТ. По фотографиям оплавленных корпусов уже снятых трансформаторов тока видно, что в основном грелась вторичная обмотка. Это объясняется тем, что при превышении тока нагрузки магнитопровод мог уйти в насыщение, а следовательно, грелась не только вторичная обмотка, но и само «железо».

Если бы оперативный персонал при периодическом осмотре вовремя не заметил зашкалившую стрелку амперметра и не почувствовал запах гари и оплавленной изоляции, то последствия могли быть еще более серьезней, например, вплоть до короткого замыкания. Вот ссылочка, где на примерах из своей практики я рассказывал про последствия от коротких замыканий. Тогда бы точно пришлось менять не только трансформаторы тока.

Поэтому и было решено немедленно отключать данный фидер!

По этому инциденту пока еще ведется расследование, но в любом случае за нарушение эксплуатации электроустановки потребитель понесет наказание, согласно действующего законодательства (скорее всего штраф). Естественно, что ему же придется оплатить приобретение новых трансформаторов тока и услуги по их замене.

Читайте также:  Расчет сечения кабеля для трансформаторов тока

С учетом изменившейся нагрузки потребитель запросил увеличить выделяемую мощность, поэтому было решено установить трансформаторы тока ТТИ-А с коэффициентом трансформации 150/5, что мы успешно и сделали. Также нам пришлось заменить щитовой амперметр, откалиброванный на коэффициент 150/5 с пределом 150 (А).

Замену трансформаторов тока, как на высоковольтных, так и на низковольтных подстанциях, по тем или иным причинам мы производим с регулярной периодичностью.

Вот буквально около месяца назад на этой же подстанции мы производили замену стареньких трансформаторов тока КЛ-0,66 на ТТИ-А. У меня даже фотографии сохранились — до замены и после. Причина замены: не прошли очередную поверку.

Зачастую старые ТТ, в основном такие как, ТК-10 или ТК-20 выходят из строя по причине ухудшения изоляции первичной обмотки, но об этом я напишу как-нибудь в следующий раз.

В конце статьи посмотрите видеоролик, который я снял в момент перегрузки трансформаторов тока на данном фидере — очень впечатляет такой режим работы:

Источник

Устранение ошибки в подключении трехфазного счетчика электрической энергии

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

В сегодняшней статье я хотел бы рассказать Вам об ошибке при подключении трехфазного электросчетчика, которую я буквально на днях устранил на одной из высоковольтных подстанций.

Ошибка довольно распространенная, поэтому я и решил написать о ней отдельную статью. В общем дело было так.

Отдел учета и планирования энергоресурсов на нашем предприятии передал замечание, что на одном из фидеров имеется недоучет.

Распределительное устройство типа КРУ, т.е. комплектное. Напряжение электроустановки 10 (кВ).

С ячейки №11 (см. схему) с помощью силового кабеля ААШВ (3х120) запитан силовой масляный трансформатор мощностью 1000 (кВА).

Как видите, на выкатном элементе (каретке) установлен высоковольтный масляный выключатель ВМПЭ-10 номинальным током 630 (А) с электромагнитным приводом ПЭВ-14.

Кстати, привод ПЭВ-14 достаточно надежный и легко-эксплуатируемый по сравнению с теми же ВИЕЮ-30, ПЭВ-2 или ПС-10. Правда привод ПЭ-11 все равно в моем рейтинге занимает самое первое место.

Трехфазный счетчик ПСЧ-4ТМ.05М.01 установлен на двери релейного отсека КРУ-10 (кВ). Там же установлены амперметр и светодиодная лампа «Блинкер не поднят», символизирующая о срабатывании предупредительной или аварийной сигнализации на данном фидере.

Счетчик ПСЧ-4ТМ.05М.01 подключен через трансформатор напряжения НТМИ-10 (про НТМИ-10 более подробно читайте здесь), установленный на сборных шинах КРУ (ячейка №15), и два трансформатора тока ТПЛ-10 с коэффициентом 150/5, установленных в кабельном отсеке КРУ, соответственно, в фазах А и С (схема неполной звезды).

Надеюсь, что Вы помните цветовую маркировку шин и проводов в трехфазной сети!? Легко-запоминающаяся аббревиатура «ЖЗК»: желтый цвет — фаза А, зеленый цвет — фаза В, красный цвет — фаза С.

Такую схему подключения я уже подробно рассматривал в одной из своих статей (вот ссылочка). Здесь же речь пойдет несколько о другом.

Итак, перейдем непосредственно к нашей проблеме недоучета.

В первую очередь я решил снять векторную диаграмму, причем не с помощью, недавно приобретенного, вольтамперфазометра ПАРМА ВАФ-А(М), а непосредственно через программу «Конфигуратор».

Читайте также:  Как оценивается состояние магнитной системы трансформатора

Актуальную версию программы «Конфигуратор» и прочие драйверы можно скачать с официального сайта Нижегородского научно-производственного объединения имени М.В.Фрунзе (nzif.ru), в зависимости от комплектации Вашего ПК или ноутбука.

Вот изначальный вид векторной диаграммы.

По ней отчетливо видно, что вектор тока фазы А (желтого цвета) находится явно не на своем месте (значительно опережает вектор напряжения фазы А), т.е. он как-бы перевернут на 180°, что и подтверждается отрицательной активной мощностью «-13,79 (Вт)» (выделил красной окружностью). Вектор тока фазы В тоже опережает вектор напряжения фазы В, но это по причине тока в фазе А, т.к. фаза В здесь мнимая (схема неполной звезды).

Вектор полной мощности находится в нижнем IV квадранте: активная мощность имеет положительный характер Р=21,58 (Вт), а реактивная — отрицательный Q=-27,82 (ВАР). Это означает то, что реактивная энергия на этом фидере как-бы генерируется. Так быть не должно, ведь это обычный трансформаторный фидер и никаких компенсирующих устройств на этой отходящей линии нет.

Старшему мастеру оперативного персонала я подал заявку на вывод фидера в ремонт, потому что в любом случае нужен доступ к трансформаторам тока. Оперативный персонал, согласно задания наряда-допуска, подготовил рабочее место: отключил масляный выключатель, выкатил каретку, включил заземляющие ножи на кабель 10 (кВ), а также выполнил все остальные необходимые технические мероприятия. Более подробно и наглядно о технических мероприятиях я рассказывал в статье про вывод в ремонт масляного выключателя, правда в распределительном устройстве КСО, а не КРУ, но суть одинаковая.

И вот только после всех описанных выше обязательных организационных и технических мероприятий мы приступили к поиску неисправности в цепях подключения электросчетчика.

Напомню, что схема соединения трансформаторов тока — неполная звезда. Вот схема токовых цепей подключения счетчика. Также в цепях учета установлен амперметр (РА) и преобразователь тока для устройства телемеханики.

Сначала мы с коллегами решили прозвонить вторичные цепи от трансформаторов тока до самого первого клеммника в релейном отсеке.

Вторичная коммутация трансформатора тока фазы А выполнена проводами черного цвета.

Напомню, что у трансформатора ТПЛ-10 имеются две вторичные обмотки. Одна используется для цепей учета (сюда могут также подключаться амперметры, ваттметры, фазометры, различные преобразователи тока и мощности для систем телемеханики, и т.п.), а другая обмотка — применяется исключительно для цепей релейной защиты. Нас интересует только первая обмотка (мы называем ее измерительной), которая обозначается, как 1И1 и 1И2.

Вторичная коммутация трансформатора тока фазы С выполнена проводами синего цвета.

Для этого отключаем провода от обмоток трансформаторов тока и с клеммника, и прозваниваем жилы в следующем порядке:

  • А421 (И1 на ТТ фазы А) — А421 (на клеммнике)
  • O421 (И2 на ТТ фазы А) — О421 (на клеммнике)
  • С421 (И1 на ТТ фазы С) — С421 (на клеммнике)
  • O421 (И2 на ТТ фазы С) — О421 (на клеммнике)

На клемнике провода О421 от разных ТТ соединяются между собой с помощью перемычки и далее на испытательную коробку (КИП) идет уже общий нулевой провод О421, а также два фазных провода А421 и С421.

Читайте также:  Силовой трансформатор романтика 106 характеристики

Заземление вторичных цепей трансформаторов тока — это обязательное условие и должно выполняться в одной точке (ПУЭ, п.3.4.23).

Точка заземления может быть, как непосредственно у трансформаторов тока, т.е. в кабельном отсеке КРУ, так и на ближайшем клеммнике, т.е. в релейном отсеке, как в нашем случае.

Прозвонка показала, что маркировка и схема подключения вторичных цепей трансформаторов тока правильная.

Теперь осталось проверить маркировку первичных выводов трансформаторов тока (Л1-Л2) по отношению к источнику питания и друг другу.

Питание на трансформаторы тока подходит снизу (с нижних разъемов выкатного элемента), поэтому там и должен быть расположен вывод Л1. Отходящий силовой кабель подключается сверху на вывод Л2.

На фазе С трансформатор тока установлен в прямом направлении (Л1-Л2).

Маркировка первичной обмотки (Л1-Л2) находится с правой стороны и из-за силового кабеля трудно было подлезть к трансформатору тока на фазе А, поэтому пришлось воспользоваться зеркалом.

Не удивительно, когда обнаружилось, что на фазе А трансформатор тока установлен наоборот по отношению к фазе С, ну и соответственно, к источнику питания.

Т.е. на фазе С трансформатор тока установлен в прямом направлении (Л1-Л2), а на фазе А — в обратном (Л2-Л1). Хотя внешне кажется, что они абсолютно одинаковые: первичные выводы изогнуты в одну сторону, вторичные выводы расположены с одной и той же стороны.

Тогда дело остается за малым — это изменить направление тока во вторичной обмотке фазы А, т.е. А421 подключить на клемму 1И2, а О421 — на клемму 1И1, т.е. поменять местами провода.

После этого, на всякий случай, я решил измерить следующие параметры обоих трансформаторов тока.

1. Омическое сопротивление вторичных цепей ТТ (измерительная обмотка и обмотка для релейной защиты).

  • Rизм.А = 0,37 (Ом)
  • Rизм.С = 0,36 (Ом)
  • Rрел.А = 0,38 (Ом)
  • Rрел.С = 0,38 (Ом)

2. Сопротивление изоляции вторичных цепей ТТ

  • Rизол.изм. = 100 (МОм)
  • Rизол.рел. = 200 (МОм)

3. Вольтамперная характеристика (ВАХ) трансформаторов тока

Снял ВАХ у измерительных обмоток (1И1-1И2) каждой фазы. Для этого, естественно, что нужно отключить заземление вторичных обмоток.

У обмоток для релейной защиты (2И1-2И2) ВАХ снимать не стал, т.к. эти работы будут производиться отдельно, согласно имеющегося у нас графика ППР.

4. Коэффициент трансформаторов тока

С помощью устройства РЕТОМ-21 навел на первичную сторону ТТ ток величиной 120 (А), а с помощью амперметра измерил ток во вторичной обмотке и он составил 4 (А) — это значит, что коэффициент трансформации равен 30.

5. Заключение

Сделал заключение, что трансформаторы тока со вторичными цепями исправны и фидер можно вводить в работу. Подал заявку мастеру оперативной службы на сборку силовой схемы.

После включения силового трансформатора в работу под небольшую нагрузку, аналогично, с помощью программы «Конфигуратор» снял векторную диаграмму — она получилась правильная и «красивая», как и должна была быть изначально.

Общий вектор полной мощности теперь располагается в нужном первом квадранте. Токи фаз также на своих местах с нормальными углами сдвига.

На этом все, спасибо за внимание. Будьте внимательны при установке трансформаторов тока и не допускайте подобных ошибок — соблюдайте полярность вторичных выводов по отношению к первичным.

Источник

Оцените статью
Adblock
detector