Что такое фронт напряжения

Фронт сигнала

  • Фро́нтом сигна́ла в электронике называется переход аналогового импульсного сигнала, в частности, цифрового сигнала из состояния «ноль» (нижний уровень) в состояние «единица» (верхний уровень) (нарастание сигнала). Переход из состояния «единица» в состояние «ноль» называют спадом сигнала. При этом подразумевается, что для сигналов напряжения нарастание сигнала — это его увеличение относительно некоторого узла цепи, которому приписан нулевой потенциал — «земле», например, от нуля до максимального. Для импульсных сигналов тока принимается нарастание модуля тока, независимо от его направления в рассматриваемом узле электрической цепи.

Часто фронт сигнала называют «передним фронтом», а спад сигнала — «задним фронтом». Иногда фронтом сигнала называют переход логического сигнала или переменной из состояния «FALSE» в состояние «TRUE» и обратный переход из состояния «TRUE» в «FALSE» — спадом логического сигнала. Длительности фронта (время нарастания) и спада (время спада) физически реализуемых сигналов занимают конечное время.

Идеализированный фронт сигнала (сокращённо — ИФС) производит переход из одного состояния в другое без задержек во времени, то есть длительность фронта равна нулю. На практике принцип ИФС используется в квантовых вычислениях.

Фронт сигнала — одно из ключевых понятий в теории триггеров в электронике. Например, триггеры со счетным входом, D-триггеры, JK-триггеры изменяют своё состояние, в зависимости от реализации, по фронту или спаду входных сигналов, которые обычно называют тактирующими сигналами, но эти сигналы не обязательно, и даже редко, являются периодическими тактирущими импульсами.

Связанные понятия

При включении биполярного транзистора по схеме с общим эмиттером (ОЭ) входной сигнал подаётся на базу относительно эмиттера, а выходной сигнал снимается с коллектора относительно эмиттера. При этом выходной сигнал инвертируется относительно входного (для гармонического сигнала фаза выходного сигнала отличается от входного на 180°). Данное включение транзистора позволяет получить наибольшее усиление по мощности, потому что усиливается и ток, и напряжение.

В статье описаны некоторые типовые применения операцио́нных усили́телей (ОУ) в аналоговой схемотехнике.

Mультипле́ксор — устройство, имеющее несколько сигнальных входов, один или более управляющих входов и один выход. Мультиплексор позволяет передавать сигнал с одного из входов на выход; при этом выбор желаемого входа осуществляется подачей соответствующей комбинации управляющих сигналов.

Источник

Фронт сигнала

Из Википедии — свободной энциклопедии

Фро́нтом сигна́ла в электронике называется переход аналогового импульсного сигнала, в частности, цифрового сигнала из состояния «ноль» (нижний уровень) в состояние «единица» (верхний уровень) (нарастание сигнала). Переход из состояния «единица» в состояние «ноль» называют спадом сигнала. При этом подразумевается, что для сигналов напряжения нарастание сигнала — это его увеличение относительно некоторого узла цепи, которому приписан нулевой потенциал — «земле», например, от нуля до максимального. Для импульсных сигналов тока принимается нарастание модуля тока, независимо от его направления в рассматриваемом узле электрической цепи.

Часто фронт сигнала называют «передним фронтом», а спад сигнала — «задним фронтом». Иногда фронтом сигнала называют переход логического сигнала или переменной из состояния «FALSE» в состояние «TRUE» и обратный переход из состояния «TRUE» в «FALSE» — спадом логического сигнала. Длительности фронта (время нарастания) и спада (время спада) физически реализуемых сигналов занимают конечное время.

Идеализированный фронт сигнала (сокращённо — ИФС) производит переход из одного состояния в другое без задержек во времени, то есть длительность фронта равна нулю. На практике принцип ИФС используется в квантовых вычислениях [1] .

Фронт сигнала — одно из ключевых понятий в теории триггеров в электронике. Например, триггеры со счетным входом, D-триггеры, JK-триггеры изменяют своё состояние, в зависимости от реализации, по фронту или спаду входных сигналов, которые обычно называют тактирующими сигналами, но эти сигналы не обязательно, и даже редко, являются периодическими тактирущими импульсами.

Источник

Электрические и временные параметры прямоугольных импульсов

Периодические и непериодические сигналы, форма которых отличается от синусоидальной, обычно называют импульсными сигналами . Процессы генерации, преобразования, а также вопросы практического применения импульсных сигналов относятся сегодня ко многим областям электроники.

Так, например, ни один современный блок питания не обходится без расположенного на его печатной плате генератора прямоугольных импульсов, такого например как на микросхеме TL494, выдающей импульсные последовательности с параметрами, подходящими для текущей нагрузки.

Поскольку импульсные сигналы могут иметь различную форму, то и называют различные импульсы в соответствии с похожей по форме геометрической фигурой: прямоугольные импульсы, трапецеидальные импульсы, треугольные импульсы, пилообразные импульсы, ступенчатые, и импульсы разных других форм. Между тем, наиболее часто практически применяются именно прямоугольные импульсы . О их параметрах и пойдет речь в данной статье.

Конечно, термин «прямоугольный импульс» несколько условен. В силу того что ничего идеального в природе не бывает, как не бывает и идеально прямоугольных импульсов. На самом деле реальный импульс, который принято называть прямоугольным, может иметь и колебательные выбросы (на рисунке показаны как b1 и b2), обусловленные вполне реальными емкостными и индуктивными факторами.

Выбросы эти могут, конечно, отсутствовать, однако существуют электрические и временные параметры импульсов, отражающие в числе прочего «неидеальность их прямоугольности».

Читайте также:  Можно ли устанавливать стабилизатор напряжения в холодном помещении

Прямоугольный импульс имеет определенную полярность и рабочий уровень. Чаще всего полярность импульса положительна, поскольку подавляющее большинство цифровых микросхем питаются положительным, относительно общего провода, напряжением, и следовательно мгновенное значение напряжения в импульсе всегда больше нуля.

Но есть, например, компараторы, питаемые двухполярным напряжением, в таких схемах можно встретить разнополярные импульсы. Вообще микросхемы, питаемые напряжением отрицательной полярности, не так широко применяются, как микросхемы с обычным положительным питанием.

В последовательности импульсов рабочее напряжение импульса может принимать низкий или высокий уровень, причем один уровень с течением времени сменяет другой. Уровень низкого напряжения обозначают U0, уровень высокого U1. Наибольшее мгновенное значение напряжения в импульсе Ua или Um, относительно начального уровня, называется амплитудой импульса .

Разработчики импульсных устройств зачастую оперируют активными импульсами высокого уровня, такими как показанный на рисунке слева. Но иногда практически целесообразно применить в качестве активных импульсы низкого уровня, для которых исходное состояние — высокий уровень напряжения. Импульс низкого уровня показан на рисунке справа. Называть импульс низкого уровня «отрицательным импульсом» — безграмотно.

Перепад напряжения в прямоугольном импульсе называют фронтом, который представляет собой быстрое (соизмеримое по времени со временем протекания переходного процесса в цепи) изменение электрического состояния.

Перепад с низкого уровня к высокому уровню, то есть положительный перепад, называют передним фронтом или просто фронтом импульса. Перепад от высокого уровня к низкому, или отрицательный перепад, называют срезом, спадом или просто задним фронтом импульса.

Передний фронт обозначают в тексте 0.1 или схематически _|, а задний фронт 1.0 или схематически |_.

В зависимости от инерционных характеристик активных элементов, переходный процесс (перепад) в реальном устройстве всегда занимает некоторое конечное время. Поэтому полная длительность импульса включает в себя не только времена существования высокого и низкого уровней, но также времена длительности фронтов (фронта и среза), которые обозначаются Тф и Тср. Практически в любой конкретной схеме время фронта и спада можно увидеть при помощи осциллографа.

Так как в реальности моменты начала и окончания переходных процессов в перепадах очень точно выделить непросто, то принято считать за длительность перепада промежуток времени, во время которого напряжение изменяется от 0,1Ua до 0,9Ua (фронт) или от 0,9Ua до 0,1Ua (срез). Так и крутизна фронта Кф и крутизна среза Кс.р. задаются в соответствии с данными граничными состояниями, и измеряются в вольтах в микросекунду (в/мкс). Непосредственно длительностью импульса называют промежуток времени, отсчитываемый от уровня 0,5Ua.

Когда рассматривают в общем процессы формирования и генерации импульсов, то фронт и срез принимают по длительности за ноль, поскольку для грубых расчетов эти малые временные промежутки оказываются не критичны.

Импульсная последовательность — это импульсы, следующие друг за другом в определенном порядке. Если паузы между импульсами и длительности импульсов в последовательности равны между собой, то это периодическая последовательность. Период следования импульсов Т — это сумма длительности импульса и паузы между импульсами в последовательности. Частота f следования импульсов — это величина обратная периоду.

Периодические последовательности прямоугольных импульсов, кроме периода Т и частоты f, характеризуются еще парой дополнительных параметров: коэффициентом заполнения DC и скважностью Q. Коэффициент заполнения — это отношение времени длительности импульса к его периоду.

Скважность — это отношение периода импульса ко времени его длительности. Периодическая последовательность скважности Q=2, то есть такая, у которой время длительности импульса равно времени паузы между импульсами или у которой коэффициент заполнения равен DC=0,5, называется меандром.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

На подстанцию.

По экономическим соображениям уровень изоляции подстанционного оборудования устанавливается ниже уровня изоляции линии. Поэтому импульсы напряжения, возникающие при ударах молнии в линию и имеющие наибольшую амплитуду, равную импульсному разрядному напряжению линейной изоляции (или установленного на подходе к подстанции защитного аппарата), представляют опасность для подстанционного электрооборудования.

Импульсы грозовых перенапряжений, набегающие на подстанцию, могут иметь разную форму. Полные импульсы, близкие по форме к импульсам тока молнии, возникают при ударах в провода линии, если их амплитуда ниже импульсного разрядного напряжения изоляции линии.

Если амплитуда тока молнии выше критического значения и при ударе в провод происходит перекрытие линейной изоляции, то образуется срезанный импульс грозового перенапряжения. Максимальное напряжение срезанного импульса определяется вольт-секундной характеристикой изоляции линии. На линиях с номинальным напряжением до 330 кВ срезанные импульсы возникают примерно в 90 % случаев. На линиях напряжением 500 кВ и выше, имеющих значительно большие импульсные разрядные напряжения изоляции, доля срезанных импульсов снижается до 50 %.

Импульсы с очень крутым (практически вертикальным) фронтом возникают при ударах молнии в опору или в трос с последующим перекрытием линейной изоляции. Длительность таких импульсов обычно мала и составляет 6–15 мкс, что объясняется отводом части тока молнии через тросы вдругие опоры.

Читайте также:  Управление реле низким напряжением

Индуктированные импульсы напряжения, возникающие при ударах молнии вблизи линии, могут иметь разную длительность. На линиях 6–35 кВ они могут вызывать перекрытия изоляции, и тогдаих длительность уменьшается.

Распространяющийся по линии импульс напряжения деформируется и затухает. Причина деформации импульса связана с явлением замедления скорости распространения волны вдоль лини при увеличении интенсивности коронирования проводов. При увеличении напряжения в импульсе коронирование возрастает, и скорость распространения уменьшается. В результате длительность фронта импульса увеличивается. Если импульс короткий или срезанный, то импульсная корона приводит не только к удлинению фронта, но и к понижению амплитуды за счет отбора части его энергии. В случае полных импульсов влияние импульсной короны сказывается в основном на удлинении фронта и в значительно меньшей степени – на снижении амплитуды. Снижение амплитуды импульса происходит в основном за счет активных потерь при возврате тока волны по земле.

Удлинение фронта полного импульса на 1 км длины линии , мкс/км, под действием импульсной короны можно рассчитать по эмпирической формуле

, (7.56)

где Umax– амплитудаполного импульса, кВ; h – средняя высота подвеса проводов, м; K – коэффициент, равный соответственно 1,0; 1,1; 1,45; 1,55 при числе проводов в фазе соответственно 1, 2, 3, 4 и более.

Точная оценка надежности защиты электрооборудования подстанций от импульсов, приходящих с линий электропередачи, требует учета всех возможных сочетаний форм и амплитуд импульсов напряжений, образующихся на линии. Практика проектирования и эксплуатации показала, что в инженерных расчетах допустимо применение приближенного подхода, состоящего в следующем: принимается, чтов месте удара молнии образуется импульс напряжения бесконечной длительности с вертикальным фронтом и амплитудой, равной U50%линейной изоляции. Снижением амплитуды импульса пренебрегают, а удлинение фронта волны в результате действия импульсной короны подсчитывают по формуле (7.56).

Зависимость максимального напряжения на электрооборудовании подстанций от крутизны набегающего импульса перенапряжения и от расстояния до защитного аппарата. Интервал координации изоляции.

Для защиты электрооборудования станций и подстанций от набегающих с воздушных ЛЭП грозовых импульсов используют главным образом ОПН и РВ. Эти защитные аппараты (ЗА) и защищаемое оборудование находятся друг от друга по ошиновке на некотором расстоянии. В результате напряжение на оборудовании оказывается выше, чем на ЗА. Оценим максимальную разницу напряжений на оборудовании и ЗА.

Рис. 7.37. Определение максимального напряжения на защищаемом оборудовании

На высоких частотах и при коротких воздействующих импульсах входная проводимость изоляции электрооборудования определяется в основном ее входной емкостью по отношению к земле Свх. Поэтому при анализе грозовых перенапряжений различное электрооборудование на эквивалентных схемах представляется конденсаторами с конкретными емкостями Свх.

Основные закономерности поведения напряжения на изоляции оборудования при воздействии набегающего грозового импульса рассмотрим на примере схемы рис. 7.37. Пусть набегающий на подстанцию импульс имеет косоугольный фронт с крутизной напряжения а. Тогда в пределах фронта импульса его напряжение увеличивается со временем по линейному закону

. (7.57)

Для упрощения анализа примем, что Свх = 0. Тогда импульс, прошедший точку 1, через время, равное l/v, придет в точку 2 и отразится от нее с тем же знаком. Отраженный импульс еще через время l/v вернется в точку 1 и наложится на падающий импульс. Под действием суммарного напряжения в некоторый момент времени tр в соответствии с вольт-секундной характеристикой РВ произойдет пробой его искрового промежутка и напряжение в точке 1 снизится (рис. 7.32). Наибольшее напряжение на разряднике перед пробоем

. (7.58)

Напряжение в точке 2 будет повышаться еще в течение времени l/v и достигнет

. (7.59)

Лишь после этого напряжение в точке 2снизится вследствие подключения в точке 1 нелинейного сопротивления РВ и, следовательно, изменения коэффициентов преломления и отражения в точке 1.

Рис. 7.38. Изменение напряжений в схеме на рис. 7.31.

После срабатывания разрядника возникают многократные отражения волн между разрядником и объектом, причем в точке 1отражения волн происходят с переменой знака вследствие небольшого сопротивления разрядника, в то время как от заряженной емкости (точка 2)волны отражаются с тем же знаком. Вследствие этого эффекта в точке 2 возникают осцилляции напряжения (см. рис. 7.38). Благодаря пологой вольт-амперной характеристике разрядника напряжение на нем почти не изменяется под влиянием отраженных волн. Поэтому для упрощенных расчетов можно заменить действительную форму напряжения на разряднике волной с косоугольным фронтом (пунктирная кривая на рис. 7.38) с крутизной, равной крутизне набегающей волны а, и с максимальным значением, равным остающемуся напряжению на разряднике при токе координации Iк.

Разница напряжений на защищаемом оборудовании и на разряднике составляет

. (7.60)

Таким образом, максимальное напряжение на защищаемом оборудовании тем больше превышает пробивное напряжение разрядника, чем дальше оно удалено от разрядника и чем выше крутизна фронта падающего импульса.

Если оборудование в схеме находится до разрядника, то картина изменения со временем напряжения на изоляции оборудования отличается от рис. 7.38. Однако вывод из (7.60) остается тем же.

Разность допустимого напряжения на защищаемом оборудовании и пробивного напряжения разрядника называется интервалом координации изоляции . Поскольку пробивное напряжение разрядника примерно равно остающемуся напряжению при токе координации, задача практически сводится к выбору интервала между остающимся напряжением разрядника или ограничителя перенапряжений и допустимым напряжением на изоляции электрооборудования подстанции. Характеристики защитных аппаратов и допустимые импульсные напряжения на изоляции оборудования Uдоп связаны соотношением

Читайте также:  Как убрать остаточное напряжение с конденсатора

. (7.61)

Координационный интервал учитывает повышение напряжения на защищаемом оборудовании по отношению к напряжению на защитном аппарате. Экономически приемлемый интервал координации достигается за счет снижения крутизны набегающего грозового импульса. Допустимая крутизна импульса напряжения адоп и расстояние l между защитным аппаратом и защищаемым оборудованием связаны соотношением

. (7.62)

Если из конструктивных соображений установлено значение l, то для соблюдения координационного интервала необходимо, чтобы на входе подстанции грозовой импульс имел в соответствии с (7.62) крутизну фронта не больше допустимого значения.

При воздействии набегающего грозового импульса напряжения в схеме подстанции возникает сложный волновой процесс. Напряжения в разных точках схемы могут иметь как апериодическую, так колебательную форму.

Даже в простейших схемах расчет напряжения на изоляции электрооборудования подстанции весьма громоздок. Поэтому исследования молниезащиты подстанций проводятся на ЭВМ или на физических моделях, получивших название анализаторов молниезащиты. В этих моделях оборудование представляется сосредоточенными емкостями, ошиновка подстанции – цепочечными схемами, защитные аппараты – специальными схемами. Источником напряжения является генератор импульсных напряжений (низкого напряжения), который допускает изменение параметров импульса в широких пределах.

Задача молниезащиты подстанции заключается в таком размещении ОПН или вентильных разрядников на территории подстанции, при котором напряжения во всех ее точках не превышают допустимых значений. Так как подстанции всегда защищаются с очень высокой степенью надежности, то в эксплуатации напряжения на изоляции достигают расчетных значений очень редко (не более 2–3 раз в течение времени жизни оборудования).

При изготовлении внутренняя изоляция проходит испытания полным и срезанным импульсами, причем амплитуда срезанного импульса может превосходить амплитуду полного импульса на 20–25 %. Поэтому принято допустимые напряжения на изоляции ставить в соответствие амплитудам испытательных импульсов.

Допустимое напряжение на трансформаторе по условию работы внутренней изоляции определяется по формуле

, (7.63)

где – испытательное напряжение при полном импульсе для трансформаторов, испытываемых без возбуждения, кВ; – действующее значение номинального напряжения, кВ.

В эксплуатации при набегании импульса трансформатор находится под напряжением промышленной частоты, поэтому второе слагаемое в (7.63) является поправкой на возбуждение. Коэффициентом 1,1 учитывается отличие реальной формы грозового импульса от импульса испытательного напряжения, а также ограниченное число перенапряжений в течение срока службы трансформатора.

Допустимые грозовые перенапряжения для внешней изоляции (вводов, разъединителей, выключателей, конденсаторов связи) устанавливают исходя также из испытательных напряжений полным и срезанным импульсами. Допустимые напряжения изоляции должны лежать ниже ее вольт-секундной характеристики.

При удаленных ударах молнии в провод обычно гирлянды на нескольких ближайших к точке удара опорах перекрываются, и дальше после них к подстанции распространяется срезанный импульс с амплитудой U50% для гирлянд изоляторов.

Рис. 7.39. Защищенный подход к подстанции для воздушной лини: а – на деревянных опорах; б – на металлических или железобетонных опорах

На рис. 7.39,а показана схема защищенного подхода, когда подходящая к подстанции линия выполнена на деревянных опорах. Трос подвешивается только в пределах защищенного подхода. Так как на деревянных опорах от тросов к заземлителям прокладываются по стойкам токоотводящие спуски, прочность изоляции опоры относительно земли существенно снижается. В этом случае первая подтросовая опора является местом с ослабленной изоляцией и для того чтобы не ухудшить грозоупорность линии, в начале защищенного подхода на каждой фазе устанавливают трубчатые разрядники PT1 или другие защитные аппараты, которые позволяют самопроизвольно погасить дугу после импульсного грозового перекрытия и не допустить отключения линии (РВ, ОПН).В конце подхода иногда устанавливают второй комплект защитных аппаратов (РТ2),которые служат для защиты разомкнутого линейного выключателя.

Если линия выполнена на металлических или железобетонных опорах и защищена тросами по всей длине (рис. 7.33,б), то трубчатые разрядники на подходе не устанавливаются. Однако на примыкающих к подстанции участках линии особенно тщательно выполняются требования молниезащиты: снижаются сопротивления заземления опор и уменьшаются углы защиты тросов. Целью этих мероприятий является уменьшение вероятностей прорыва молнии через тросовую защиту и обратных перекрытий при ударах в опоры в пределах защищенного подхода к подстанции.

Защищенный подход выполняет еще одну важную функцию. При прохождении импульса напряжения по защищенному подходу вследствие действия импульсной короны происходит удлинение его фронта и, таким образом, снижение крутизны фронта импульса, набегающего на подстанцию. Длина защищенного подхода должна быть достаточной для того, чтобы крутизна фронта импульса напряжения снизилась до значения, безопасного для оборудования подстанции. Для этого должно выполняться условие: . С целью повышения надежности расчетов полагают, что в месте удара молнии образуется импульс напряжения бесконечной длительности с вертикальным фронтом и амплитудой, равной U50% линейной изоляции. При таком допущении длительность фронта импульса, дошедшего до подстанции, равна , где – длина защищенного подхода. Тогда крутизна дошедшего импульса . Из указанного выше условия

. ( 7.64)

Из (7.60) окончательно запишем формулу для нахождения минимальной длины защищенного подхода

, (7.651)

где в км, U50% в кВ, в кВ/мкс, в мкс/км.

Источник

Оцените статью
Adblock
detector