Что такое мертвая зона защиты реле

Мертвая зона. Мертвая зона – участок линии при КЗ, в пределах которого реле направления мощности не работает из–за того

Мертвая зона – участок линии при КЗ, в пределах которого реле направления мощности не работает из–за того, что мощность на её зажимах оказывается меньше мощности срабатывания.

По правилам устройства электроустановок (ПУЭ) при расчете уставок токовой направленной защиты должна быть рассчитана протяженность мертвой зоны.

При металлическом трехфазном КЗ на границе мертвой зоны (рис.7.6.4, точка К1) мощность на зажимах реле равна мощности срабатывания:

, (7.15)

где SC.P – мощность срабатывания, определяется по заводским данным;

– ток трехфазного металлического КЗ в начале линии (допускается с целью упрощения).

Вычисление sin(a–jP):

– параметры линии.

Зная jК и схему включения реле, находят jP.

Например для 90° схемы jP=jК – 90° (см. рис. 7.4.5), угол внутреннего сдвига a находят из справочника или паспорта реле. Подставив данные в формулу (7.15), находят UС.P

Первичное фазное напряжение, необходимое для срабатывания реле:

UФ1=UC.P nН – если реле включено на фазное напряжение;

– если реле включено на линейное напряжение.

Сопротивление ZМ.З, в котором падение напряжения от тока IКЗ равно UФ1:

. (7.16)

, (7.17)

где Zу – удельное сопротивление линии, .

Мертвая зона является существенным недостатком всех защит, в состав которых входят реле направления мощности.

Дата добавления: 2015-07-10 ; просмотров: 3221 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

МЕРТВАЯ ЗОНА

Выше указывалось на возможность отказа в действии РНМ при КЗ вблизи места установки РЗ вследствие недостаточного; значения напряжения (рис.7.12). Участок ЛЭП при КЗ, в пределах которого РНМ не работает из-за того, что мощность на его зажимах оказывается меньше мощности срабатывания, называется мертвой зоной.

Для характеристики чувствительности РЗ важно знать протяженность мертвой зоны. Имеются различия в определении мертвой зоны для индукционных и полупроводниковых РНМ. Для индукционного РНМ по известному значению мощности срабатывания реле

(7.7)

определяют напряжение срабатывания реле при КЗ на границе мертвой зоны в точке М (рис.7.12):

(7.8)

В выражение (7.8) подставляются значения:Sс.р– по заводским данным или лабораторным испытаниям; Iр – определенное расчетом при трехфазном КЗ в самом начале ЛЭП (точка N на рис.7.12): Ip = I(3)kN /KI,где KI коэффициент трансформации TT; sin(α – φр) – угол внутреннего сдвига φ принимается из каталога, φр для 90-градусной схемы равен φк – 90° (φк принимается для сетей разного напряжения равным: 35кВ — 45°, 110 кВ — 60-70°, 220 кВ — 75-82°).

Поскольку РHМ включается на междуфазное напряжение,

(7.9)

где Uф1 – первичное фазное напряжение, необходимое для срабатывания РНМ; KU коэффициент трансформации ТН.

Длина мертвой зоны, км, определяется по выражению

где Zy – удельное сопротивление 1км ЛЭП.

Для полупроводникового РHМ расчет мертвой зоны упрощается, так как значение Uс.р задано и предварительные вычисления по его определению не нужны.

Мертвая зона является недостатком НТЗ. Однако опыт эксплуатации показывает, что в случае применения чувствительных реле отказ последних из-за мертвой зоны крайне редок вследствие малого значения lm.Для обеспечения отключения КЗ в пределах мертвой зоны там, где это возможно, устанавливается токовая (ненаправленная) отсечка.

Читайте также:  Конденсатор параллельно контактам реле

Источник

Что такое мертвая зона защиты реле

Защиты объединяют в две группы:

В пределах каждой группы выдержки времени выбираются по ступенчатому принципу, как у МТЗ линии с одним источником питания.

Минимальная выдержка у защита А2. t А2.

Аналогично для второй группы.

Ток срабатывания направленной МТЗ

Расчет тока срабатывании выполняется как и у ненаправленной МТЗ.

,

В данном случае учитываются только максимальные токи, направленные от шин в линию. Следовательно величина токов срабатывания может быть ниже, чем у ненаправленной МТЗ.

При неисправности цепей напряжения защита может срабатывать ложно из-за неправильного срабатывания реле направления мощности. Поэтому в схеме применяют устройство контроля неисправности цепей напряжения, которые выводят защиту из действия при их неисправности.

В сетях с глухозаземленными нейтралями при коротком замы­кании на землю возможны срабатывания реле направления мощ­ности, включенных на токи неповрежденных фаз при направлении мощности КЗ к шинам.

Защита может выводиться из действия при однофазных КЗ. Если не выводится, то необходимо дополнительно отстроится по току срабатывания

Мертвая зона токовой направленной защиты.

Чтобы реле направления мощности сработало, к нему нужно подводить напряжение.

При трехфазном КЗ в месте установки защиты напряжение равно 0.

Если , то реле работать не будет.

Появляется мертвая зона – зона, в пределах которой РНМ не действует. По величине эта зона небольшая.

Наличие мертвой зоны является недостатком направленной за­щиты.

Схемы включения реле направления мощности

1. Схема включения на полные токи и напряжения фаз.

Типовой является 90-градусная схема включения.

2. Схема включения реле направления мощности на составляющие нулевой последовательности.

Используется в системах с заземленной нейтралью.

Источник

Ликвидация коротких замыканий в «мертвой зоне» распределительных устройств энергообъектов. Liquidation of short circuits in the «deadzone» of power distribution devices

Авторы: А.В. Жуков, к.т.н., ОАО «СО ЕЭС», В.С. Воробьёв, инж., ОАО «СО ЕЭС», А.И. Расщепляев, инж., ОАО «СО ЕЭС», Б.К. Максимов, д.т.н., ФГБОУ ВПО «НИУ МЭИ», Я.Л. Арцишевский, к.т.н., ФГБОУ ВПО «НИУ МЭИ», Р.К. Борисов, к.т.н., ФГБОУ ВПО «НИУ МЭИ», А.С. Кузин, инж., ФГБОУ ВПО «НИУ МЭИ»
Authors: A.V. Zhukov, V.S. Vorobev, A.I. Rasshcheplyaev, B.K. Maksimov, Y.L. Artsishevskiy, R. Borisov, A.S. Kuzin, «System Operator Of The United Po System», Joint-Stock Company, National Research University «Moscow Power Engineering Institute» So Ups, Jsc (System Operator Of The United Power System, Jsc, Moscow Power Engineering Institute (Technical University)

Ключевые слова: динамическая устойчивость; «мертвая зона»; релейная защита «мертвой зоны».

Keywords: dynamic stability; «dead zone»; relay protection of a «dead zone».

Аннотация: Компоновочные решения распределительных устройств (РУ) ряда электростанций таковы, что короткие замыкания (КЗ) в некоторых местах ликвидируются только за счет действия устройства резервирования отказа выключателя («мертвая» зона). При определенной длительности КЗ нарушается динамическая устойчивость генераторов электростанций даже с учётом применения противоаварийной автоматики (ПА). Для решения указанной задачи разработана релейная защита «мертвой» зоны (РЗМЗ), позволяющая ликвидировать КЗ со временем действия основных защит электросетевых элементов РУ.

Abstract: Layout solutions of a switchgears of a number of power plants is such that a short circuits in some places will be liquidated only by the action of a switch failure redundancy device («dead zone»). With such du-ration of a short circuit the dynamic stability of power generators is broken even with the use of emergency automation.

To solve this problem there is a developed solution relay protection of a «dead zone», which allows to eliminate the short circuit with the duration of the basic protections of the grid elements of a switchgears.

Читайте также:  Схема реле птф акцент

Источник

Мертвая зона защиты

При удалении точки КЗ К от места установки защиты соотношение токов II и III по поврежденной и здоровой линиям изменяется (см. рис. 8.3.4.).

Соотношение токов можно вычислить как:

(8.9.)

При повреждениях на некотором участке m вблизи подстанции B ток IP оказывается меньше тока срабатывания IС.З. и защита перестаёт работать. Участок линий при КЗ в пределах которого ток в защите недостаточен для её срабатывания, называется мертвой зоной защиты. Защита, реагирующая на разность токов параллельных линий не может охватывать своей зоной действия защищаемые линии полностью.

Наличие мертвой зоны – существенный недостаток поперечной дифференциальной защиты. Для отключения КЗ в мертвой зоне требуется дополнительная защита

Из формулы (8.9.), при КЗ на границе мертвой зоны следует:

(8.10.)

где: IК – ток при КЗ на шинах противоположной подстанции. (Для упрощения расчетов в курсовой работе.)

Защита признаётся эффективной, если длина мертвой зоны не превышает 10% от длины линии.

При отключении одной из параллельных линий, поперечная дифференциальная защита превращается в мгновенную максимальную защиту оставшейся в работе линии и действует неэффективно. Поэтому при отключении одной линии поперечная дифференциальная защита должна выводиться из действия.

Дата добавления: 2015-01-19 ; просмотров: 8 ; Нарушение авторских прав

Источник

Принцип действия продольной и поперечной токовой дифзащиты

Принцип действия продольной дифференциальной токовой защиты

Эта защита основана на сравнении токов в начале и конце защищаемого элемента. Для выполнения защиты линии на ее концах устанавливаются измерительные трансформаторы тока с одинаковыми коэффициентами трансформации.

Вторичные обмотки трансформаторов тока одноименных фаз и обмотка реле соединяются так, чтобы при коротком замыкании вне зоны, ограниченной измерительными трансформаторами, ток в реле отсутствовал, а при повреждении внутри зоны был равен току короткого замыкания.

Применяются две возможные схемы выполнения дифференциальной защиты: с циркулирующими токами и с уравновешенными напряжения. С циркулирующими токами: схема получается путем параллельного соединения вторичных обмоток трансформаторов тока ТАI, ТAII и обмотки реле тока КА. При этом ток в реле İр определяется с учетом принятых условных положительных направлений токов İ1I и İ1II по концам защищаемой линии Л.

С учетом положительных направлений в нормальном режиме, а также при внешних коротких замыканиях ток в реле равен геометрической разности вторичных токов:

При равенстве первичных токов İ1I и İ1II и отсутствии погрешностей измерительных трансформаторов вторичные токи İ2I = İ2II , поэтому ток в реле Iр = 0 и защита не срабатывает. В этом случае вторичные токи İ2I и İ2II циркулируют только по вспомогательным проводам, соединяющим вторичные обмотки трансформаторов тока.

При повреждении в зоне токи İ1II и İ2II при показанном условном положительном направлении становятся отрицательными, вследствие чего токи İ2I и İ2II в обмотке реле складываются: İр= İ2I + İ2II =İ . При одностороннем питании один из токов, например İ2II , равен нулю. При этом ток İ2I не может замыкаться через вторичную обмотку второго трансформатора тока, так как трансформатор тока работает в режиме источника тока (сопротивление обмотки реле во много раз меньше внутреннего сопротивления трансформатора тока). Весь ток İ2I проходит через реле. Таким образом, при коротком замыкании в зоне ток в реле İр определяется током İк в точке повреждения. При этом защита срабатывает, если IР > Icp.

Следовательно, продольная дифференциальная защита действует при повреждениях в зоне и не реагирует на внешние короткие замыкания и токи нормальной работы, т.е. она обладает абсолютной селективностью. Эта принципиальная особенность дает возможность выполнять защиту без выдержки времени, а при выборке тока срабатывании — не учитывать токов нагрузки.

Читайте также:  Реле безопасности авв 2tla010026r0200

В действительности трансформаторы тока имеют погрешности. Поэтому, несмотря на равенство первичных токов, вторичные токи İ2I и İ2II при нормальной работе и внешних коротких замыканиях не одинаковы по абсолютному значению и не совпадают по фазе и в реле появляется ток, называемый током небаланса Iнб . Для исключения неправильной работы дифференциальной защиты ток срабатывания реле должен выбираться с учетом токов небаланса.

Поперечная дифференциальная токовая защита

Принцип действия защиты и выбор тока срабатывания.

Эта защита основана на сравнении токов одноименных фаз параллельных цепей с мало отличающимися параметрами. Для осуществления защиты используют трансформаторы тока с одинаковыми коэффициентами трансформации, установленные со стороны питающих шин А. Реле тока КА включается на разность токов двух одноименных фаз сдвоенной линии по схеме с циркулирующими токами. При принятом условном положительном направлении токов от шин в линию ток в реле İр = İ2I İ2II . Поэтому, как и в продольной дифференциальной защите, при нормальной работе и внешних коротких замыканиях (за пределами сдвоенной линии в точке K1) по обмотке реле проходит только ток небаланса.

Ток срабатывания реле тока выбирается по условию Iс.р = kзап Iнб.рсч.max при kзап = 1,3. Максимальный расчетный ток небаланса для защиты линий с одинаковыми параметрами определяется по выражению :

Учитывая изложенное о возможных погрешностях трансформаторов тока и о апериодической составляющей, можно принять kодн kап =1,0.

При коротком замыкании на одной из линий равенство токов İ2I и İ2II нарушается, в реле появляется ток. Если İр = | İ2I – İ2II | > İc.p, то реле срабатывает и отключает выключатель Q линии.

Мертвая зона защиты.

При удалении точки короткого замыкания от места установки защиты ток в поврежденной линии уменьшается, а в неповрежденной возрастает, вследствие чего ток Iр в обмотке реле уменьшается так, что при повреждении вблизи шин противоположной подстанции, он становится меньше тока срабатывания. При этом защита отказывает в действии. Длина участка lм.з , при повреждении в пределах которого защита не работает из-за недостаточного тока в реле, называется мертвой зоной поперечной дифференциальной токовой защиты.

Согласно требованиям, длина мертвой зоны не должна превышать lм.з

Оценка защиты.

Защита по принципу действия не защищает сборки сдвоенной линии и шины подстанции, а в случае отключения одной из цепей должна выводиться из действия, так как ее ток срабатывания в общем случае оказывается не отстроенным от тока оставшейся в работе цепи и защита не имеет выдержки времени. Это, а также наличие мертвой зоны являются недостатком защиты, исключающим возможность ее применения в качестве единственной защиты сдвоенных линий.

Поперечная дифференциальная токовая защита не способна определить, на какой из параллельных цепей имеется повреждение, поэтому она не может быть использована для параллельных линии с выключателями на каждой из них, когда требуется и имеется возможность отключать только поврежденную линию. Такая возможность появляется и на сдвоенной линии, если разъединители в ее параллельных цепях снабжены приводами с дистанционным управлением. В этом случае действие защиты может быть согласовано с работой устройства АПВ линии. При повреждении любой параллельной цепи защита сначала отключает выключатель Q , после этого отключается разъединитель QS1 или QS2 поврежденной цепи, а затем выключатель включается.

Источник

Оцените статью
Adblock
detector