Что такое наладка силового трансформатора

Содержание
  1. Испытания и наладка силовых трансформаторов
  2. Какие испытания проводятся для силовых трансформаторов
  3. Перечень основных проверок, измерений и испытаний силовых трансформаторов
  4. Условия и нормы проведения измерения и испытаний
  5. Измерение сопротивления изоляции
  6. Измерение коэффициента абсорбции
  7. Порядок измерения коэффициента абсорбции
  8. Измерение сопротивления изоляции обмоток
  9. Особенности измерения изоляции мегаомметром первичной и вторичной обмотки
  10. Измерения тангенса угла диэлектрических потерь
  11. Измерение сопротивлений обмоток постоянному току
  12. Испытание потерь и тока холостого хода
  13. Проверка коэффициента трансформации
  14. Проверка групп соединений обмоток
  15. Контрольная проверка работы переключающего устройства ответвлений обмоток трансформатора
  16. Измерение сопротивления току короткого замыкания
  17. Периодичность испытания силового трансформатора
  18. Пусконаладочные испытания силовых трансформаторов
  19. Назначение, объем и порядок испытаний
  20. Измерение потерь холостого хода при малом однофазном возбуждении
  21. Измерение активного сопротивления обмоток
  22. Измерение коэффициента трансформации
  23. Проверка группы соединения обмоток

Испытания и наладка силовых трансформаторов

Цель и задача испытаний и наладки силовых трансформаторов – это сокращение аварий, поиск дефектов, определение эксплуатационной способности оборудования. Испытания позволяют оценить рабочую готовность силового трансформатора как части надежной, безопасной и экономически выгодной системы электроснабжения.

Какие испытания проводятся для силовых трансформаторов

Появление неисправности возможно во время транспортировки к месту монтажа нового или отремонтированного трансформатора.

Виды испытаний силового трансформатора:

Профилактические испытания действующего оборудования, они выявляют вероятные дефекты для своевременного ремонта и предотвращения аварийной ситуации, выполняют по установленным графикам, между капитальными ремонтами.

Послеремонтные испытания трансформатора выявляют удовлетворительность полученных рабочих характеристик. Проводят после капитального ремонта.

Нормативные документы и правила, которым следуют при испытаниях

Действующий ГОСТ Р 56738-2015: «Трансформаторы силовые и реакторы. Требования и методы испытаний электрической прочности изоляции». Стандарт введен 08. 01. 2016 года, дата актуализации 01. 01. 2018 года.

Во время проверки силовых трансформаторов руководствуются нормами испытаний электрооборудования и аппаратов электроустановок потребителей ПТЭЭП пр. 3.0.2 обозначенными в приложении №3 глава 2.

Испытания предусматривают выполнение условий техники безопасности, которые прописаны в ПУЭ-7 последнее издание, пункт 1.8.16. «Нормы приемо-сдаточных испытаний силовых трансформаторов, автотрансформаторов и масляных реакторов, заземляющих дугогасящих реакторов».

Правилами ПТЭЭП, являющийся основным, регламентирующим испытания документом во время введения оборудования в работу, в период эксплуатации.

Перечень основных проверок, измерений и испытаний силовых трансформаторов

В обязательный список измерений, испытаний и проверок входят следующие действия:

Измерение целостности и удовлетворительного качества изоляции обмоток, проверка сопротивления мегомметром.

Проверка трансформатора на диэлектрические потери, измерение тангенса угла (tgδ).

Проверка характеристик трансформаторного масла, выполняемая до испытания параметров электрической прочности и состояния изоляции обмоток.

Определение коэффициента трансформации и групп соединения обмоток.

Измерение тока КЗ (Iкз) и потерь холостого хода.

Испытания обмоток постоянному току.

Проверка работоспособности РПН и ПБВ.

Условия и нормы проведения измерения и испытаний

Проведение испытаний возможно только при нормальных погодных условиях,

Влажность воздуха окружающей среды – не более 90%.

Температура изоляции: +5 – 10 градусов, только при экстренном выводе трансформатора 35 кВ в срочный ремонт температура может быть намного ниже нормы.

Испытания производятся не менее 12 часов после заливки в трансформатор масла.

Испытания разрешены лишь с протоколом, подтверждающим пригодность жидкого диэлектрика. Желательная прочность масла на пробой – 80 – 100 кВ/см

Изоляторы вводов – чистые и без видимых повреждений: сколов и трещин, целыми прокладками и резьбой на шпильках.

Исходные параметры контролируют при пуске трансформатора – это паспортные данные или результаты заводских испытаний.

Результатами, которые получены в ходе текущей проверки руководствуются при последующих выводах оборудования на капремонт или в процессе работы трансформатора. Отклонение от полученных параметров свидетельствует о степени серьезности будущего ремонта.

Измерение сопротивления изоляции

Проверка сопротивления изоляции мегомметром предваряет высоковольтные испытания. Делается это для определения целостности изоляции, отсутствия замыканий на землю, проверки величины сопротивления и определения коэффициента абсорбции, с целью убедиться в отсутствии превышающей нормы влажности и необходимости постановки оборудования на просушку.

Для измерения берется мегомметр на предел напряжения 2500В, например, марки Е6-24, с его помощь возможен замер изоляции и определение коэффициента абсорбции.

Важно: испытания силового трансформатора мегомметром разрешено выполнять только вдвоем. Проверяющий с группой допуска по электробезопасности IV, помощник с гр. III.

Измерение коэффициента абсорбции

Измерения выполняется мегомметром, данные фиксируются через 15 сек (R15) и через 60 секунд (R60) после начала проверки.

Отношение вторичного результата к первичному (R60/R15), которое является коэффициентом, не определяется точными нормами. Допустимая величина коэффициента – 1,2. Верхний предел коэффициента – без ограничений.

Порядок измерения коэффициента абсорбции

Перед измерением, вывода обмотки заземляются на 2 мин.

Между двумя измерениями вывода для стекания тока заземляют на 5 минут.

Во время проверки сопротивления обмоток одного напряжения замер проводится одновременно закорачиванием шпилек выводов.

Измерение сопротивления изоляции обмоток

Особенности измерения изоляции мегаомметром первичной и вторичной обмотки

Измерение изоляции обмотки высокого напряжения

Применяется мегомметр с пределом измерения на напряжение 2500 В.

Напряжение прикладывается к закороченным и заземленными выводами вторичной обмотки. Между первичной обмоткой и «землей» трансформатора.

Полученное значение сопротивление не менее 1000 МОм.

Измерение изоляции обмотки низкого напряжения

Для проверки берут мегомметр на 1000 В.

Сопротивление измеряется между вторичной обмоткой и закороченной первичной обмоткой замкнутой на бак трансформатора.

Результат – R больше или равен 1000 МОм.

Контроль изоляции во время эксплуатации трансформатора допускает 15% погрешности. Для измерения абсорбции применяют мегаомметры с погрешностью не более 10%. Проверка производится однотипными приборами, чтобы избежать расхождения в показателях.

Одна из распространенных ошибок при измерении – это возникновение погрешности из-за остаточного заряда емкости. Необходимо перед каждым измерением дать стечь емкостному абсорбированному току, для этого на 5 минут закорачивают и заземляют на корпус вывод трансформатора.

Измерения тангенса угла диэлектрических потерь

Проверка силового трансформатора на диэлектрические потери, измерение тангенса угла (tgδ) выполняется выпрямительными мостами переменного тока Р5026, МД-16, Р595 по прямой нормальной схеме с электродами изолированными от земли. Эта схема является более точной. Вторая схема измерения является перевернутой (обратной) несмотря на то, что перевернутая схема менее точная для проверки оборудовании вводов и трансформаторов используют ее. Один из электродов должен быть обязательно заземлен.

Рис. №2. Прямая (а) и обратная (б) принципиальная мостовая схема измерения тангенса угла диэлектрических потерь

Читайте также:  Транспортная масса трансформатора это

Существует ряд приборов современного типа, например СА7100-2 или Тангенс 2000.

Измерение проводится при температуре окружающего воздуха от +10 градусов.

Чем выше показатель тангенса угла, тем выше потери и хуже состояние изоляции.

По правилам ПУЭ-7 пункт 1.8.16 измерение диэлектрических потерь для трансформаторов мощностью до 1600 кВА не обязательно.

Измерение сопротивлений обмоток постоянному току

Испытание силового трансформатора постоянным током выполняется с помощью специальных установок узкоспециализированного действия. К ним относится выпрямительный мост постоянного тока типа P333. Это могут быть современные установки аналогичного действия с классом точности не ниже 0,5. Например, миллиомметр МИКО-7 с базовым программным обеспечением или измерительный стенд для электромагнитных испытаний силовых трансформаторов СЭИТ-3.

Установка состоит из регулятора и выпрямителя, приборов контроля и измерения, средств защиты.

Выполняют два вида измерений обмоток:

Оборудование с нулевым выводом – проверяются фазные сопротивления.

Без нулевого вывода – сопротивления обмоток между линейными выводами.

Измеренный результат должен совпадать с паспортным или отличаться на ±10%. Различие результатов свидетельствует о внутреннем повреждении.

Испытание потерь и тока холостого хода

Измерение гармонического состава тока холостого хода (ХХ) проверяется после подачи на обмотку НН напряжения 220 В. Опыт ХХ выполняется при напряжении номинальной величины синусоидальной формы.

Рис. №3. Схема опытов холостого хода трехфазного трансформатора

Производится три последовательных опыта ХХ поочередным замыканием каждой из трех фаз и возбуждением двух других фаз. Линейный ток и его гармоники должны быть симметричными.

Для проверки используют измерительный комплект К540 или другим аналогичным анализатором спектра низкой частоты.

Проверка коэффициента трансформации

Измерение выполняется на всех ступенях и ответвлениях обмотки.

Проверка производится методом двух вольтметров замером напряжения одновременно между обмотками НН и ВН.

Рис. №4. Схема проверки коэффициента трансформации

Важно. Для предотвращения ошибок контроль напряжения проводят одновременно на обоих приборах. Учитываются колебания сети напряжения 220 В. Значение Ктр одной фазы не должно отличаться более 2% от других фаз.

Проверка групп соединений обмоток

Идентичность групп соединений обмоток нужна для последующего введения трансформатора в параллельную работу.

Проверка выполняется только когда неизвестны паспортные данные или трансформатор после ремонта.

Проверяю с помощью подключения гальванометра с градуировкой, где ноль находится посередине шкалы и табличными значениями отклонений в градусах.

Рис. №5. Схема определения групп соединений обмоток

Совпадение выводов означает максимальное отклонение стрелки гальванометра.

После проверки выполняют обработку полученных данных и вычисляют результаты.

Таблица 1 — Определение групп соединений обмоток

Контрольная проверка работы переключающего устройства ответвлений обмоток трансформатора

Определить правильно или нет работает смонтированное переключающее устройство можно с помощью измерения сопротивления постоянному току обмоток, которая регулируется. Контроль производится на всех положениях после проверки коэффициента трансформации.

Рис. №6. Схема проверки переключающего устройства 1 – методом падения напряжения; 2 – мостовым методом

О правильности монтажа свидетельствует наличие самого большого сопротивления в положении №1 с последующим уменьшением значения при переключении на другие положения.

Равное сопротивление между фазами трансформатора свидетельствуют о правильной сборке ПБВ для трехфазного оборудования.

Измерение сопротивления току короткого замыкания

Для проверки используется специальный измерительный комплект. Проверка выполняется возбуждением обмотки с высокой стороны трехфазным напряжением 380 В. Измерение производится по приборной шкале с занесением в журнал проверок. Обязательно сравнение тока КЗ с заводскими показателями или паспортными данными. Это необходимо для проверки степени эксплуатационной стойкости изоляции обмотки короткому замыканию.

Периодичность испытания силового трансформатора

Периодичность испытаний подчиняется нормам ГОСТ Р 56738-2015, местным инструкциям, которые определены согласно эксплуатационным условиям.

Руководствуясь нормами, проверку изоляции обмоток трансформатора проводят – 1 раз в год.

Остальные элементы конструкции: шпильки, бандажи и прочее проверяют 1 раз в 4 года.

Коэффициент трансформации подтверждается на соответствие заявленному значению 1 раз в 6 лет.

Сухие трансформаторы испытываются 1 раз в 6 лет.

Для определения работоспособности трансформатора периодически раз в год выполняют отбор проб трансформаторного масла для испытаний.

В зависимости от эксплуатационных испытаний трансформаторного масла решают возможность выполнения полной проверки трансформатора.

Зная уровень содержания влаги, определяют степень износа. Во время длительной эксплуатации влага в совокупности со старением бумажно-масляной изоляции или из-за нарушения герметичности так называемого «дыхания трансформатора» повышает вероятность пробоя изоляции и ускоряет ее старение. Определив, уровень влажности можно регулировать периодичность технического обслуживания.

Испытания трансформатора после ремонта или нового после транспортировки к месту установки служит гарантом надежности оборудования, являющегося важным звеном в системе электроснабжения потребителей и безотказности электрической схемы.

Источник

Пусконаладочные испытания силовых трансформаторов

Назначение, объем и порядок испытаний

Пусконаладочные испытания предназначены для проверки основных технических данных трансформатора и отдельных его узлов перед включением трансформатора в эксплуатацию, а также выявления скрытых неисправностей. Часть вышеуказанных измерений и испытаний проводят в процессе монтажа трансформатора, часть — после окончательной сборки и заливки маслом.

Измерение параметров изоляции входит в оценку состояния изоляции трансформатора. В объем пусконаладочных испытаний входят:
1) измерение потерь холостого хода при малом однофазном возбуждении;
2) измерение омического сопротивления обмоток;
3) измерение коэффициента трансформации;
4) проверка группы соединения обмоток;
5) испытание изоляции приложенным напряжением.

При производстве пусконаладочных работ необходимо соблюдать определенную последовательность в выполнении перечисленных испытаний.

Измерение потерь холостого хода следует проводить до подачи постоянного напряжения на обмотки трансформатора, так как постоянное напряжение может вызвать дополнительное намагничивание магнитной системы и, как следствие, получение неудовлетворительных результатов измерений, поэтому потери холостого хода при малом возбуждении измеряют до нагрева трансформатора постоянным током и до измерения активных сопротивлений обмоток.

Активное сопротивление обмоток следует измерять при установившейся температуре трансформаторов до нагрева или после остывания, для того чтобы избежать ошибочных результатов, связанных с неравномерной температурой отдельных обмоток

Испытание изоляции приложенным напряжением следует проводить после оценки ее состояния. Нарушение этой последовательности может вызвать повреждение вполне доброкачественного трансформатора. Например, при испытании электрической прочности изоляции пробой в трансформаторе может быть вызван низким качеством залитого масла, наличием влаги в изоляции, загрязнением и другими недостатками, контролируемыми при оценке изоляции.

Очередность проведения измерения коэффициента трансформации и определения группы соединений обмоток не установлена.

Ввиду сложности пусконаладочных испытаний, необходимости соответствующего опыта в проведении работ и специального оборудования и приборов такие испытания проводят специализированные наладочные организации или лаборатории. Результаты измерений и испытаний оформляют соответствующими протоколами, прилагаемыми к технической документации по монтажу трансформатора.

Читайте также:  Греется силовой трансформатор причины

Особое внимание при испытаниях следует уделить безопасности проведения работ.

Измерение потерь холостого хода при малом однофазном возбуждении

Эти испытания производятся для трансформаторов мощностью 10000 кВА и более. Потери холостого хода при малом однофазном возбуждении измеряют по схемам, приведенным на рисунке 1,а. Для трехфазных трансформаторов выполняют три однофазных опыта путем поочередного замыкания накоротко одной из фаз и возбуждения двух других фаз трансформатора.

а — схемы последовательного закорачивания фаз: слева направо закорочены соответственно фазы с, b, а; б — схема подключения приборов; в — схема подключения питания при размагничивании
Рисунок 1 — Измерение потерь холостого хода при малом возбуждении с последовательным закорачиванием фаз

В первом опыте накоротко замыкают обмотку фазы А и возбуждают фазы В и С. При этом измеряемые потери будут характеризовать потерю энергии на возбуждение фаз В и С магнитопровода. Аналогичные опыты производят при поочередно закорачиваемых других фазах.

Замыкание накоротко обмотки любой фазы можно производить на соответствующих выводах любой из обмоток трансформатора, учитывая при этом действительную схему соединения обмоток трансформатора. При измерении обычно подводят напряжение и закорачивают накоротко одну из фаз на стороне низшего напряжения трансформатора, добиваясь таким образом большего возбуждения магнитной системы.

При испытании измеряют подводимое напряжение и суммарную мощность, потребляемую испытуемым трансформатором и измерительными приборами. Затем определяют потребление измерительных приборов (Рпр) путем измерения или расчета. Измерение потребления приборов производят по схеме на рисунке ,б. Потребление приборов можно определить также по формуле:

где U — подводимое переменное напряжение, В;
Rv — сопротивление вольтметра, Ом;
Rw — сопротивление обмотки напряжения ваттметра, Ом.

Потери в испытуемом трансформаторе вычисляют по формуле:

В трехфазных трансформаторах потери, измеряемые по схемам с закорачиванием фаз А и С, должны быть практически равными, а измеренные по схеме с закорачиванием фазы В — больше последних. Это объясняется различной длиной пути замыкания магнитного потока при возбуждении трансформатора по указанным схемам измерения. При возникновении какого-либо короткозамкнутого витка для одного из стержней магнитопровода соотношение потерь, измеренных по этим схемам, изменится, причем появление короткозамкнутого витка вызывает увеличение потерь, поэтому «дефектной» будет та фаза, при закорачивании которой будут измерены наименьшие потери. Это явление используется для оценки состояния трансформаторов.

Полученные результаты оценивают путем сравнения их со значениями, измеренными при изготовлении и приведенными в паспорте трансформатора. Для сравнения результатов измерение потерь производят по схемам и при напряжении, указанном в паспорте трансформатора.

Для трансформаторов на напряжение до 35 кВ включительно измеренные потери для каждой из схем не должны отличаться более чем на 10% значений, полученных при изготовлении. Отношение потерь, измеренных при закорачивании фаз А и С (РА/РС), а также отношение этих потерь к потерям, полученным при закорачивании фазы В (РВ/РА и РВ/РС), не должны отличаться в пределах погрешности измерений от таких же отношений, полученных при измерении на заводе.

Для однофазных трансформаторов на напряжение 110 кВ и более полученные потери не должны отличаться более чем на 10% от потерь, измеренных при изготовлении трансформаторов.

Для трехфазных трансформаторов на напряжение 110 кВ и выше соотношение потерь, измеренных по указанным выше схемам (РА/РС, РВ/РА и РВ/РС), не должно отличаться больше чем на 5% таких же соотношений потерь, полученных при изготовлении.

Если трансформаторы имеют реакторные переключающие устройства, то измерение потерь холостого хода дополнительно производят на промежуточном положении регулятора «Мост». Результаты оценивают аналогично путем сравнения их с заводскими значениями на данном положении устройства. На результаты измерений значительное влияние оказывает намагничивание магнитопровода вследствие протекания по обмоткам трансформатора постоянного тока. В этих случаях для измерения потерь трансформаторы размагничивают.

Размагничивание производят путем подачи на обмотки постоянного тока с изменяющейся полярностью. Схема размагничивания трансформатора показана на рисунке 1,в. При помощи реостата плавно увеличивают ток в обмотке трансформатора до значения, равного 1,1 тока холостого хода. Затем также плавно снижают ток до 0 и, переключая полярность, увеличивают ток до значения 1,1 тока холостого хода. Такие циклы изменения тока производят при значениях тока 0,8; 0,6; 0,4 и 0,2 Iхх. Затем, снизив ток до 0, отключают источник питания постоянного тока и повторяют измерение потерь холостого хода.

Возможно произвести размагничивание трансформаторов методом кратковременной подачи на обмотки номинального напряжения в режиме холостого хода трансформаторов. Методика проведения измерений потерь холостого хода на однофазном пониженном напряжении должна соответствовать ГОСТ 3484-77.

Измерение активного сопротивления обмоток

Измерение сопротивления обмоток постоянному току производят для проверки состояния электрических контактных соединений и целостности электрической цепи обмоток трансформатора. Наиболее характерными дефектами, которые обнаруживаются при этом измерении, являются:
1) обрыв одного или нескольких из параллельных проводов в отводах;
2) нарушение пайки;
3) недоброкачественный контакт присоединения отводов обмотки к вводам;
4) недоброкачественный контакт в переключателях ПБВ или устройствах РПН;
5) неправильная установка привода ПБВ.

Обычно в условиях монтажа сопротивление измеряют при помощи амперметра и вольтметра методом падения напряжения. На рисунке 2,а, б показаны две принципиальные схемы подключения приборов при измерении. Схему на рисунке 2,а применяют при измерении малых значений сопротивлений от долей Ома до нескольких Ом, а схему на рисунке 2,б — при измерении больших значений сопротивления. Правильный выбор схемы измерения исключает значительные погрешности из-за падения напряжения в приборах, которые обычно при вычислении значения сопротивления не учитываются.

Рисунок 2 — Схемы измерения сопротивления обмотки постоянному току

В практике в основном применяют схему на рисунке 2,а. При сборке этой схемы цепи тока и напряжения разделяют, т. е. выполняют отдельными проводами, чтобы исключить из измеряемого сопротивления сопротивление проводов цепи тока и переходным сопротивления в местах подключения цепей и напряжения к вводам трансформатора. Цепь измерения напряжения должна подключаться непосредственно к токоведущим шпилькам вводов испытываемой обмотки. Обычно сопротивление измеряют при напряжениях до 24 В и токах до 10 А. При этом ток не должен превышать 20% номинального тока обмотки.

Читайте также:  Кабельные трансформаторы тока с кольцевыми сердечниками

Пределы измерения приборов должны быть выбраны такими, чтобы при измерениях отклонение по стрелке было во второй половине шкалы. Класс точности приборов должен быть не более 0,5. В качестве источника питания, как правило, применяют кислотные или щелочные аккумуляторные батареи.

Сопротивление реостата выбирают в 8—10 раз больше, чем сопротивление измеряемой обмотки. Измерение производят следующим образом. Включают рубильник и при помощи реостата устанавливают необходимый ток в цепи. В результате индуктивности обмотки ток будет постепенно возрастать до установившегося значения. После установления тока записывают показания вольтметра и амперметра. Вольтметр включают после установления тока в цепи, а выключают перед отключением рубильника. Невыполнение этого порядка включения и отключения вольтметра может привести к его повреждению.

При измерении сопротивления обмотки, обладающей большой индуктивностью, для уменьшения времени установления тока в цепи производят кратковременное форсирование (увеличение) тока путем шунтирования реостата кнопкой. Время установления тока при измерении сопротивления обмоток больших трансформаторов достигает 30 минут и более. Сопротивление измеряют для каждой обмотки трансформатора на всех положениях переключающего устройства. Оценку результатов производят путем сравнения полученных значений с данными, указанными в паспорте трансформатора.

Для однофазных трансформаторов полученные значения не должны отличаться больше чем на 2% значений, указанных в паспорте при одинаковой температуре и на тех же регулировочных ответвлениях.

Для трехфазных трансформаторов сопротивления, полученные на одинаковых ответвлениях разных фаз, не должны отличаться друг от друга более чем на 2%. если в паспорте нет специальных указаний.

Полученные значения сопротивления обмотки постоянному току приводят к температуре, указанной в паспорте трансформатора по формуле:

где Rx — значение сопротивления при температуре, указанной в паспорте tx, Ом;
R0 — значение сопротивления при температуре измерения t0, Ом;
t0 — температура измерения, °С;
tx — температура, указанная в паспорте, °С.

За температуру масляного трансформатора, ранее не включавшегося и не подвергавшегося нагреву, принимают температуру верхних слоев масла при условии, что измерение сопротивления производят не ранее чем через 30 минут после заливки масла для трансформаторов мощностью до 1000 кВА включительно и не ранее чем через 60 минут для трансформаторов большой мощности.

Методика проведения измерения сопротивления обмоток должна соответствовать ГОСТ 3484 77.

Измерение коэффициента трансформации

Коэффициентом трансформации называют отношение напряжения обмотки ВН к напряжению обмотки ИН при холостом ходе трансформатора. Коэффициент трансформации определяют для всех ответвлений обмоток и для всех фаз. Для трехобмоточных трансформаторов достаточно проверить коэффициент трансформации для двух пар обмоток. Путем измерения коэффициента трансформации могут выявляться следующие отклонения:
1) неправильное подсоединение отводов РПН;
2) неправильная установка привода ПБВ.

Коэффициент трансформации определяют методом двух вольтметров. Измерение производят двумя вольтметрами класса не ниже 0,5 следующим образом. К одной из обмоток трансформатора подводят напряжение и измеряют его одним из вольтметров. Одновременно другим вольтметром измеряют напряжение на другой обмотке. Чтобы избежать применения измерительных трансформаторов напряжения, переменное напряжение 220—380 В подводят к обмотке ВН.

При испытании трехфазных трансформаторов коэффициент трансформации определяют по линейным напряжениям на соответствующих одноименных линейных выводах обеих проверяемых обмоток или по фазным напряжениям соответствующих фаз. Коэффициент трансформации по фазным напряжениям измеряется при однофазном и трехфазном возбуждении.

Если схема соединения измеряемых обмоток ∆/Y или Y/∆, коэффициент трансформации измеряют при однофазном возбуждении с поочередным закорачиванием фаз (рисунок 3). Одну из фаз, соединенных в треугольник, накоротко замыкают путем соединения двух соответствующих выводов данной обмотки, а напряжение подают на две оставшиеся фазы. Полученное значение коэффициента должно быть равно 2 Кф при питании со стороны звезды или Кф/2 при питании со стороны треугольника, где Кф — фазный коэффициент трансформации.

Рисунок 3 — Схема измерения фазного коэффициента трансформации при соединении обмоток ∆/Y и Y/∆

Если схема соединения измеряемых обмоток ∆/∆ иле Y/Y фазный коэффициент можно измерять при трехфазном возбуждении, если предварительно установлено, что несимметрия напряжения практически не снижает точности измерения, или при однофазном возбуждении с закорачиванием фаз. Фазный коэффициент трансформации в основном определяют для выявления причин неудовлетворительных значений линейного коэффициента.

Коэффициент трансформации измеряют также методом моста или образцового трансформатора. Однако эти методы не находят широкого применения при монтаже.

Полученные значения коэффициента трансформации на всех ответвлениях не должны отличаться более чем на 2% значения, рассчитанного по номинальным напряжениям.

Методика определения коэффициента трансформации должна соответствовать ГОСТ 3484-77.

Проверка группы соединения обмоток

Группа соединения характеризует угол сдвига векторов ЭДС в обмотках ВН, СН и НН одноименных фаз трансформатора. Тождественность групп соединения обмоток различных трансформаторов является основным условием их параллельной работы, несоблюдение этих условий вызывает возникновение при параллельной работе значительных уравнительных токов, которые в некоторых случаях могут во много раз превосходить номинальные. Это обстоятельство в основном определяет необходимость проверки группы соединения обмоток трансформаторов после их монтажа. В практике случаи несоответствия группы, указанной в паспорте трансформаторов, случаются чрезвычайно редко.

Наиболее характерными недостатками, выявленными при проверке группы соединения обмоток, являются:
1) неправильно выполненная маркировка вводов трансформатора;
2) неправильное подсоединение отводов обмоток к вводам.

При испытании трехобмоточных трансформаторов проверяют группу соединения между двумя парами разных обмоток. Проверку группы соединения обмоток трансформаторов на монтаже производят главным образом по методу двух вольтметров для трехфазных и методу постоянного тока для однофазных трансформаторов.

Метод двух вольтметров основан на совмещении векторных диаграмм первичного и вторичного напряжения и измерений напряжений между соответствующими вводами с последующим сравнением полученных значений с расчетными.

Для совмещения векторных диаграмм выводы А и а испытуемого трансформатора соединяют между собой. Затем к одной из обмоток подводят напряжение обычно не более 380 В и измеряют последовательно напряжение между выводами в-В, в-С и с-В — при испытании трехфазных трансформаторов и выводами х-Х — при испытании однофазных трансформаторов (рисунок 4,а).

а — методом вольтметра; б — методом подачи постоянного тока
Рисунок 4 — Схемы измерения группы соединения обмоток

Полученные значения сравниваются с расчетными, которые предварительно вычисляют по формулам, приведенным в таблице 1.

Таблица 1 — Расчетные значения измеряемого напряжения при проверке групп соединения обмоток методом двух вольтметров

Источник

Оцените статью
Adblock
detector