Что такое вихревые токи в трансформаторе

Что такое вихревые токи и какие меры принимают для их уменьшения

Что такое вихревые токи и почему их еще называют токами Фуко? Причины возникновения данного явления и способы применения.

В электричестве есть целый ряд явлений, которые нужно знать специалистам. Хоть и не вся информация может пригодиться в повседневной практике, но иногда поможет понять причину какой либо проблемы. Вихревые токи послужили причиной становления некоторых технологических ухищрений при изготовлении электрических машин и даже стали основой для принципа работы некоторых изобретений. Давайте разберемся, что такое вихревые токи Фуко и как они возникают. Содержание:

  • Краткое определение
  • История открытия
  • Вред от вихревых токов
  • Как снизить потери
  • Применение на практике

Краткое определение

Вихревые токи — это токи, которые протекают в проводниках под воздействием на них переменного магнитного поля. Не обязательно поле должно изменяться, может и тело двигаться в магнитном поле, все равно в нем начнёт течь ток.

Нельзя найти реальную траекторию движения токов для их учёта, ток протекает там, где находит путь с наименьшим сопротивлением. Вихревые токи всегда протекают по замкнутому контуру. Основные условия для его возникновения — нахождение предмета в переменном магнитном поле или его перемещение относительно поля.

История открытия

В 1824 году учёный Д.Ф. Араго проводил эксперимент. Он на одной оси смонтировал медный диск, над ним расположил магнитную стрелку. При вращении магнитной стрелки диск начинал двигаться. Так впервые наблюдали явление вихревых токов. Диск начинал вращаться из-за того, что из-за протекания токов появлялось магнитное поле, которое взаимодействовало со стрелкой. Это назвали, тогда как явление Араго.

Спустя пару лет М. Фарадей, открывший закон электромагнитной индукции, объяснял это явление таким образом: подвижное магнитное поле наводит в диске ток (как в замкнутом контуре) и он взаимодействует с полем стрелки.

Почему второе название — это токи Фуко? Потому что физик Фуко подробно исследовал явление вихревых токов. В ходе своих исследований он сделал великое открытие. Оно заключалось в том, что тела под воздействием вихревых токов нагреваются. С теорией разобрались, теперь мы расскажем о том, где применяются токи Фуко и какие вызывают проблемы.

На видео ниже предоставлено более подробное определение данного явления:

Вред от вихревых токов

Если вы рассматривали конструкцию сетевого трансформатора 50 Гц, наверняка обратили внимание, что его сердечник набран из тонких листов, хотя может показаться что проще было сделать цельную литую конструкцию.

Дело в том, что так борются с вихревыми токами. Фуко установил нагрев тел, в которых они протекают. Так как работа трансформатора и основана на принципах взаимодействия переменных магнитных полей, то вихревые токи неизбежны.

Любой нагрев тел – это выделение энергии в виде тепла. В таком случае будут возникать потери в сердечнике. Чем это опасно? В электроустановке сильный нагрев приводит к разрушению изоляции обмоток и выходу из строя машины. Вихревые токи зависят от магнитных свойств сердечника.

Как снизить потери

Потери энергии в магнитопроводе не приносят пользы, тогда как с ними бороться? Чтобы снизить их величину сердечник набирают из тонких пластин электротехнической стали — это своеобразные меры профилактики для снижения паразитных токов. Такие потери описывает формула, по которой можно произвести расчет:

Как известно: чем меньше сечение проводника, тем больше его сопротивление, а чем больше его сопротивление, тем меньше ток. Пластины изолируют друг от друга окалиной или слоем лака. Сердечники крупных трансформаторов стягиваются изолированной шпилькой. Так снижают потери сердечника, т.е. это и есть основные способы уменьшения токов Фуко.

Читайте также:  Торы в выходных трансформаторов

Какие последствия от влияния этого явления? Магнитное поле, возникающее из-за протекания токов Фуко ослабляет поле, из-за которого они возникли. То есть вихревые токи уменьшают силу электромагнитов. То же самое касается и конструкции деталей электродвигателей и генератора: ротора и статора.

Применение на практике

Теперь о полезных сферах применения токов Фуко. Огромный вклад был внесен в металлургию изобретением индукционных сталеплавильных печей. Они устроены таким образом, что расплавляемую массу металла помещают внутри катушки, через которую протекает ток высокой частоты. Его магнитное поле наводит большие токи внутри металла до его полного плавления.

Примечание автора! Развитие индукционных печей значительно повысило экологичность производства металла и изменило представление о методах плавки. Я работаю на металлургическом комбинате, где десять лет назад запустили новый высокотехнологичный цех с такими установками, а спустя несколько лет после освоения нового оборудования был закрыт классический мартен. Это говорит о продуктивности такого способа нагрева металлов. Также используются вихревые токи для поверхностной закалки металла.

Наглядное применение на практике:

Кроме металлургии они используются на производстве электровакуумных приборов. Проблемой является полное удаление газов перед герметизацией колбы. С помощью токов Фуко электроды лампы разогревают до высоких температур, таким способом деактивируя газ.

В быту вы можете встретить кухонные индукционные плиты, на которых готовят пищу, благодаря как раз применению данного явления. Как видите, вихревые токи имеют свои плюсы и минусы.

Токи Фуко несут и пользу, и вред. В некоторых случаях их влияние влечёт за собой не электрические проблемы. Например, трубопровод, проложенный около кабельных линий, быстрее сгнивает без видимых сторонних причин. В то же время устройства индукционного нагрева довольно показали себя с хорошей стороны, тем более такой прибор для бытового использования можно собрать самому. Надеемся, теперь вы знаете, что такое вихревые токи Фуко, а также какое применение нашлось им на производстве и в быту.

  • Как сделать индукционный котел своими руками
  • Зависимость сопротивления проводника от температуры
  • Правило буравчика простыми словами


Источник

Вихревые токи трансформаторов

Паразитные вихревые токи в обмотках и сердечнике в значительной мере ответственны за потери, особенно в трансформаторах на большие токи и при нелинейной нагрузке. На Рис. 7.9 показаны пути этих токов в проводниках. Магнитное поле, обозначенное знаком «+», перпендикулярное к направлению проводника, индуцирует напряжения, вызывающие протекание вихревых токов в своих петельках. Напряжения в смежных проводниках уничтожают другдруга в середине. Но тем не менее остаются токи, которые текут вдоль радиальной поверхности проводников, что увеличивает омические потери в обмотках по сравнению с потерями от тока, протекающего вдоль проводника обмотки.

Перекладка проводов с помощью полупетли в середине обмотки уменьшает вихревые токи, так как индуцируемые напряжения противопо-

Рис. 7.9. Перекладка проводов для уменьшения вихревъа: токов

ложны в месте скрутки. Провода для больших токов часто делают из двух или трех проводников, собранных в бифилярную или трифилярную скрутку. Перекладка проводов используется с ранних дней телефонии для уменьшения перекрестнъюс искажений и взаимодействия между линиями питания. В линиях передачи энергии на большие расстояния перекладка проводов применяется для обеспечения фазовой балансировки.

Вихревые токи в сердечнике также вносят свой вклад в потери. Хотя магнитное поле и направлено в плоскости пластин, вихревые токи текут в их поперечном сечении, как показано на Рис. 7.10. Эти токи могут быть уменьшены при уменьшении толщины пластин сердечника, что и используется в высокочастотных трансформаторах. Однако из практических соображений, касающихся цены и удобства обращения, наиболее распространенным является применение пластин из кремнистого железа толщиной 0.014 дюйма (0.356 мм). Однако в некоторых специальных случаях используются пластины толщиной 0.001…0.002 дюйма (0.0254…0.051 мм). На уникальном оборудовании завода «Сендцимер» (Sendzimer) их прокатывают, а затем нарезают, как часовые пружинки, для производства тороидальных сердечников. Сплав, используемый в этом случае, может содержать никель и (или) молибден.

Если напряжение в первичной обмотке или ток во вторичной обмотке содержат гармонические составляющие, то потери из-за вихревых токов могут значительно увеличиться. В первом случае это происходит из-за увеличения потерь в сердечнике, а во втором — из-за увеличения омических потерь в проводах. Широкое распространение драйверов электродвигателей с регулировкой скорости вращения, которые обычно создают воз-

Читайте также:  Схема подключения трансформаторов ом с элементами защиты

Рис. 7.10. Вихревые токи в пластиие сердечника

мущения в цепи их питания, привело к необходимости разработки стандартов на способность трансформаторов работать с большим содержанием гармоник в токе вторичной цепи. Эта способность характеризуется коэффициентом k, определяемым как

где n — номер гармоники, а /„ — среднеквадратичное значение тока на этой гармонике. Основная гармоника при этом — I\. Стандартные конструкции имеют k = A и k = 13. Например, ток вторичной цепи, содержащий 20% пятой и 14% седьмой гармоник, будет иметь & = [1+(0.2х5) 2 + (0.14х7) 2 ] = 3. Если содержание гармоник убывает обратно пропорционально к основной, коэффициент k растет линейно с добавлением каждой гармоники. Важно отметить, что нет надежных способов оценить возможность применения стандартного трансформатора в цепях с нелинейными токами.

Как показано на Рис. 7.11, магнитное поле в трансформаторе увеличивается от нуля в зоне внутренних витков первичной обмотки до максимума в зоне ее внешних витков, а затем спадает до нуля в зоне внешних витков вторичной обмотки. Вихревые токи пропорциональны магнитному полю, а потери — квадрату токов и, следовательно, поля. По этой причине потери из-за вихревых токов в основном сконцентрированы вблизи зазора между первичной и вторичной обмотками.

Для устранения проникновения во вторичную цепь трансформаторов синфазных помех из первичной сети часто применяют заземленный экран из медной фольги, размещаемый между первичной и вторичной обмотками. Этот экран называют электростатической защитой, или экраном Фарадея. Этот экран может вызвать проблемы, если первичная и вторичная обмотки имеют разную длину в аксиальном направлении или вторичная обмотка состоит из нескольких секций, используемых не одновременно. В обоих случаях часть магнитного поля проходит радиально через экран, что может привести к его перегреву и, как следствие, к повреждению изоляции. Этот случай был упомянут в самом начале этой главы.

Рис. 7.11. Потери из-за вихревых токов в обмотках

Рис. 7.12. Нагрев вихревыми токами экранов Фарадея из различпыхматериалов

Поскольку приходилось неоднократно встречаться с такой проблемой, это подтолкнуло автора к проведению ряда экспериментов по определению реакции ряда материалов, из которых мог бы быть изготовлен экран Фарадея, на воздействие магнитного поля, перпендикулярного поверхности образцов. На катушку, возбуждавшую магнитное поле, подавался переменный ток частотой 60 Гц. Температура образцов измерялась с помощью термопары. Результаты приведены на Рис. 7.12. Интересно, что сетка из того или иного металла обеспечивала практически такую же электростатическую защиту, как и сплошной лист, а сопротивление экрана имело небольшое значение. В соответствии с результатами, приведенными на Рис. 7.12, в компании, где работал автор, в качестве стандартного материала для экранов Фарадея было принято использовать монель или нержавеющую сталь.

Источник: Сукер К. Силовая электроника. Руководство разработчика. — М.: Издательский дом «Додэка-ХХI, 2008. — 252 c.: ил. (Серия «Силовая электроника»).

Источник

Особенности вихревых токов Фуки

Каждый человек, который изучает электродинамику и другие разделы науки об электричестве, сталкивается с таким понятием, как вихревые токи. Что это такое, какие есть свойства вихревых токов, как определить их в трансформаторе? Об этом и другом далее.

Суть явления

Вихревые или токи фуко — это те, которые протекают из-за воздействия переменного магнитного поля. При этом изменяется не само поле, а проводниковое положение данного поля. То есть если будет происходить проводниковое перемещение статичного поля, то в нем все равно будет образовываться энергия.

Фуко возникают там, где изменяется переменное магнитное поля и фактически они ничем не отличаются от энергии, идущей по проводам, или вторичных электрических трансформаторных обмотков.

Определение из учебного пособия

Свойства вихревых токов

Стоит отметить, что вихревая энергия не отличается от индукционной проводной. По направлению и силе Фуко зависит от металлического проводникового элемента, от того, в каком направлении идет переменный магнитный поток, какие имеет свойства металл и как изменяется магнитный поток. При этом токовое распределение очень сложное.

Читайте также:  Объединение нейтралей двух трансформаторов

В проводниковых объектах, имеющих габаритные объемы, токи бывают большими, из-за чего значительно повышается температура тела.

Токовая энергия способна создавать нагревание проводника для индукционной печи и металлического плавления. Подобно другим индукционным разновидностям, Фуко взаимодействуют с первичным магнитным полем и тормозят индуктивное движение.

Нагревание как одно из свойств

Полезное и вредное действие

Имеют токи фуко полезное и вредное действие. Они нагревают и плавят металлы в области вакуума и демпфера, но в то же время происходят энергопотери в области трансформаторных сердечников и генераторов из-за того, что выделяется большое количество тепла.

Полезное действие индукционных токов

Как определить в трансформаторе

Узнать, где находятся вихревые токи в трансформаторе, несложно. Как правило, они располагаются в трансформаторных сердечниках. Когда замыкаются в сердечниках, то нагревают их и создают энергию. Поскольку появляются в плоскостях, которые перпендикулярны магнитному потоку по характеристике, происходит трансформаторное уменьшение сердечников.

Обратите внимание! Для их измерения используются изолированные стальные пластины.

Применение

Нашли вихревые токи применение в электромагнитной индукции. Они используются для того, чтобы тормозить вращающиеся массивные детали. Благодаря магнитоиндукционному торможению они также применяются, чтобы успокоить подвижные части электроизмерительных приборов, в частности, чтобы создать противодействующий момент и притормозить подвижную часть электросчетчиков.

Также используются они в магнитном тормозном диске на электрическом счетчике. В ряде случаев применяются в технологических операциях, которые невозможны без применения высоких частот. К примеру, при откачке воздуха из вакуумных приборов и баллонов с газом. Кроме того, они нужны, чтобы полностью обезгаживать арматуру в высокочастотном генераторе.

Способы уменьшения блуждающих токов

Чтобы уменьшить блуждающие фуковые токи, нужно максимальным образом сделать увеличение сопротивления на токовом пути с помощью заполнения дистиллированной водой циркуляционной системы и встраивания изоляционных шлангов трубопроводов у теплового обменника и вентиля.

Стоит отметить, что нахождение их в электромашинах нежелательно из-за нагрева сердечников и создания энергопотери, поскольку по закону Леннца они размагничивают эти устройства. Чтобы уменьшить их вредное воздействие, используется несколько методов.

Так сердечники машин делают из стали и изолируют друг от друга при помощи лаковой пленки, окалины и прочих материалов. Благодаря этому они не распространяются. Кроме того, поперечный вид сечения на каждом отдельном проводнике уменьшает токовую силу.

В некоторых приборах в качестве сердечников используются катушки с отожженой железной проволокой. При этом полоски на них идут параллельно тем линиям, которые расположены на магнитном потоке.

Обратите внимание! Ограничение вихревой энергии происходит изолирующими прокладками, то есть жгуты состоят из отдельных жил, изолированных между собой.

Возможные проблемы

Вихревые виды проводят энергию и рассеивают ее, выделяя джоулевую теплоту. Такая энергия ротора асинхронной двигательной установки готовится из фурромагнетиков и способствует нагреву сердечников.

Чтобы бороться с подобным явлением, сердечники создаются из тонкой стали, покрываются изоляцией и устанавливаются поперек пластин. Если пластины имеют небольшую толщину, они обладают малой объемной плотностью. Благодаря ферритам и веществам, имеющим большое магнитосопротивление, сердечники делаются сплошными. Направление их ослабляет энергию внутри провода.

В результате он неравномерный. Это явление скин-эффекта или поверхностного эффекта, из-за которого внутренний проводник бесполезен, и в цепях, где есть большая частота, используются проводниковые трубки.

Обратите внимание! Скин-эффект применяется для того, чтобы разогревать поверхностный металл для металлической закалки. При этом закалка может быть проведена на любой глубине.

Фуко являются индукционными токами, которые возникают в крупных проводниках сплошного типа. Обозначаются буквой ф. Они имеют свойство нагрева проводников. В результате чего они чаще используются в индукционного типа печах. Важно отметить, что способны генерировать магнитное поле. В этом механизм их работы. В некоторых случаях они полезны, в других нежелательны. В любом случае они используются во многих устройствах.

Источник

Оцените статью
Adblock
detector