Диоды с наибольшим падением напряжения

Электроника для всех

Блог о электронике

Диод. Часть 1

Как то я не особо расписывал эту незатейливую детальку. Ну диод и диод. Система ниппель. Пропускает в одну сторону, не пропускает в другую, чего уж проще. В принципе да, но есть нюансы. О них, да немного о прикидочном выборе данной детальки и будет эта статья.

▌Клапан
В двух словах, в нашей канализационной электрике для сантехников диод это клапан. Вот типа вот такого:

И да, будет большим допущением считать, что клапан пропускает в одну сторону, а не пропускает в другую. На самом деле все несколько сложней. На самом деле у клапана же есть некая упругость пружины, так вот пока прямое давление не преодолеет эту пружину никакого потока не будет, даже в прямом направлении.

Для диода это справедливо в той же мере. Есть у диода такой параметр как падение напряжения. Оно для диодов Шоттки составляет около 0.2…0.4вольт, а для обычных диодов порядка 0.6…0.8 вольт.

Из этого знания следует три простых вывода.

1) Чтобы ток шел через диод напряжение на диоде должно быть выше его падения напряжения.

2) Какой бы ток через диод не шел, на нем всегда будет напряжение примерно равное его падению напряжения (собственно потому его таки зовут). Т.е. сопротивление диода нелинейно и падает с ростом тока.

3) Включая в цепь диод последовательно с нагрузкой, мы потеряем на нагрузке напряжение равное падению напряжения диода. Т.е. если вы в батарейное питание на 4.5 вольт для защиты от переполюсовки поставите диод, то потеряете от батареек 0.7 вольт, что довольно существенно. Ваше устройство перестанет работать гораздо раньше чем реально сядут батарейки. А батареи не будут высажены до конца. В этом случае лучше ставить диод Шоттки. У него падение ниже чем у простого (но есть свои приколы). А лучше вообще полевой транзистор.

До кучи пусть будет еще и график:

Это вольт-амперная характеристика диода. По которой наглядно видно, что открывается он примерно от 0.7 вольт. До этого ток практически нулевой. А потом растет по параболе вверх с ростом напряжения. У резистора ВАХ была бы прямолинейной в прямом соответствии с законом Ома. А в обратку диод не то чтобы не пропускает, но ток там совсем незначительный, доли миллиампера. Но после определенного напряжения диод резко пробивает и он начинает открываться, падение напряжения устанавливается где-то на уровне предела по обратному напряжению, а после и вовсе сгорает. Ведь рост тока, да большое падение напряжения на диоде означают большие тепловые потери (P=U*I). А диод на них не рассчитан. Вот и сгорает обычно он после пробоя. Но если ограничить ток или время воздействия, чтобы тепловая мощность не превышала расчетную, то электрический пробой является обратимым. Но это касается только обычных диодов, не Шоттки. Тех пробивает сразу и окончательно.

А вот и реальная характеристика диода Vishay 1N4001

Прямая ВАХ, показан один квадрант, рабочий. Начинается гдето с 0.6 вольт. При этом ток там мизерный. А дальше, с ростом напряжения, диод начинает резко открываться. На 0.8 вольтах ток уже 0.2А, на 1 вольте уже под 2.5А и так далее, пока не сгорит 🙂

Вот вам и ответ на вопрос почему нельзя светодиоды втыкать последовательно на источник напряжения без токоограничения. Вроде бы падения скомпенсированы, ну что им будет то? А малейшее изменение напряжения вызывает резкое изменение тока. А источники питания никогда не бывают идеальными и разброс по питанию там присутствует всегда. В том числе и от температуры и нагрузки.

И обратная ВАХ, напряжение в процентах от максимального (т.к. даташит на все семейство диодов, от 4001 до 4007 и у них разное обратное напряжение). Тут токи уже в микроамперах и ощутимо зависят от температуры.

Читайте также:  Трансформатор понижает напряжение с 220 до 42 дополнительная обмотка

▌Выбор диодов. Быстрые прикидки.
В первом приближении у диода нам интересные три параметра — обратное напряжение, предельный ток и падение напряжения.

Т.е. если вы делаете выпрямитель в сетевое устройство, то диод вам хорошо бы вольт на 400, а лучше на 600 пробивного обратного напряжения. Чтобы с хорошим запасом было.

С предельным током все тоже просто. Он должен быть не меньше, чем через него потечет. Лучше чтобы был запас процентов в 30.

Ну, а падение обычно нужно учитывать для малых напряжений, батарейного питания.

Открываем даташит на … пусть это будет 1N4007 (обычный рядовой диод) и ищем искомые параметры. И сразу же видим искомое, табличку предельных значений Maximum Rating или как то так:

IF(AV) прямой ток. Обозначается всегда как то так. Тут 1А. Предельный ток который этот диод тащит и не дохнет. Импульсно он протаскивает до 30А в течении 8.3мс (IFSM), скажем заряд конденсаторов через себя переживет.

Предельное обратное напряжение определяется параметрами:
VRRM — повторяющееся пиковое значение.
VRMS — действующее значение синусоидального переменного напряжения. На западе принято называть его среднеквадратичным. У нас постепенно тоже приходят к такому обозначению.
VDC — и просто обратное постоянное напряжение.

Ну, а падение смотрим по графикам в том же даташите под конкретный ток.

Есть еще диоды Шоттки, у них меньше внутренняя емкость и поэтому они во первых гораздо быстрей закрываются, что важно для импульсных преобразователей, работающих на большой частоте. А во вторых, имеют втрое ниже падение напряжение. Но, у них мало обратное пробивное напряжение. Классический диод Шоттки выглядит по даташитам примерно так:

Это 1N5819 стоящий в Pinboard II в преобразователе:

Падение напряжения можно измерить мультиметром, в режиме проверки диодов.

Он показывает падение в вольтах. И это падение обязательно надо учитывать, особенно в слаботочных цепях. Например, развязываете вы диодом какой-нибудь вывод микроконтроллера, с уходящим от него сигналом. Например, чтобы при подключении устройства в контроллер не потекло чего лишнего.

А сам контроллер (МК) должен подавать в устройство ХЗ логическую единицу. И, скажем, дает ее как 3.3 вольта. А если падение диода 0.6 вольт и у вас до Х.З. дойдет не 3.3 вольта, а меньше. А тут возникает вопрос, а воспримет ли Х.З. это как логическую единицу? Корректно ли это будет? Ну и, соответственно, решать проблемы если нет.

Светодиодов все это касается в той же мере. Только у них падение напряжения гораздо выше и зависит от цвета. Также, если хотите правильно вычислить ограничение резистора для светодиода, то измеряете его падение напряжения. Вычитаете из питания падение напряжения светодиода (или светодиодной цепи), а потом по полученному напряжению считаете по закону Ома сопротивление.

Например, имеем светодиод на с падением в 3 вольта. Его номинальный ток 10мА, а источник питания у нас 5 вольт. Итак, 5-3 = 2 вольта. Теперь на эти два вольта надо подобрать резистор, чтобы ток был 10мА. 2 / 0,01=200 ом.

Особенно важно правильно подбирать сопротивления для фонарей разных оптронов и прочих оптических датчиков. Иначе характеристики не предсказуемые.

Поэтому, кстати, нельзя включать светодиоды параллельно с общим токоограничивающим резистором. Т.к. диоды имеют разброс по характеристикам, даже если они из одной партии. А из-за малейшего отличия от соседей разница тока через один диод может быть весьма существенная. В результате один из диодов будет работать с перекалом, перегреется и сгорит. Токоограничивающий резистор ставят на каждый диод.

Во второй части этой статьи, которая уже написана, будет более детально расписаны остальные параметры и почему они образуются, исходя из полупроводниковой конструкции диода. А я пока картинки нарисую…

Спасибо. Вы потрясающие! Всего за месяц мы собрали нужную сумму в 500000 на хоккейную коробку для детского дома Аистенок. Из которых 125000+ было от вас, читателей EasyElectronics. Были даже переводы на 25000+ и просто поток платежей на 251 рубль. Это невероятно круто. Сейчас идет заключение договора и подготовка к строительству!

А я встрял на три года, как минимум, ежемесячной пахоты над статьями :)))))))))))) Спасибо вам за такой мощный пинок.

Читайте также:  Нахождение напряжения между точками

Источник

Диод Шоттки

Что такое диод Шоттки

Диод Шоттки относится к семейству диодов. Выглядит он почти также, как и его собратья, но есть небольшие отличия.

Простой диод выглядит на схемах вот так:

обозначение диода на схеме

Стабилитрон уже обозначается, как диод с «кепочкой»

Диод Шоттки имеет две «кепочки»

обозначение диода шоттки на схеме

Чтобы проще запомнить, можно добавить голову и ножки и представить себе человечка, танцующего ламбаду)

Обратное напряжение диода Шоттки

Итак, как вы помните, диод пропускает электрический ток только в одном направлении, а в другом направлении блокирует прохождение электрического тока до какого-то критического значения, называемым обратным напряжением диода.

Это значение можно найти в даташите

обратное напряжение диода

Для каждой марки диода оно разное

Если превысить это значение, то произойдет пробой, и диод выйдет из строя.

Падение напряжения на диоде Шоттки

Если же подать прямой ток на диод, то на диоде будет «оседать» напряжение. Это падение напряжения называется прямым падением напряжения на диоде. В даташитах обозначается как Vf , то есть Voltage drop.

Если пропустить через такой диод прямой ток, то мощность, которая будет на нем рассеиваться, будет определяться формулой:

Vf — прямое падение напряжение на диоде, В

Поэтому, одним из главных преимуществ диода Шоттки является то, что его прямое падение напряжения намного меньше, чем у простого диода. Следовательно, он будет меньше рассеивать тепло, или простым языком, меньше нагреваться.

Давайте рассмотрим один из примеров. Возьмем диод 1N4007. Его прямое падение напряжения составляет 0,83 Вольт, что типично для простого полупроводникового диода.

падение напряжение на диоде в прямом включении

В настоящий момент через него проходит сила тока, равная 0,5 А. Давайте рассчитаем его рассеиваемую мощность в данный момент. P=0,83 x 0,5 = 0,415 Вт.

Если рассмотреть этот случай через тепловизор, то можно увидеть, что его температура корпуса составила 54,4 градуса по Цельсию.

Теперь давайте проведем тот же самый эксперимент с диодом Шоттки 1N5817. Как вы видите, его прямое падение напряжения составило примерно 0,35 В.

падение напряжения на диоде Шоттки при прямом включении

При прохождении силы тока через диод Шоттки в 0,5 А, мы получим рассеиваемую мощность P=0,5 x 0,35 = 0,175 Вт. При этом тепловизор нам покажет, что температура корпуса уже будет 38,2 градуса.

Следовательно, Шоттки намного эффективнее, чем простой полупроводниковый диод в плане пропускания через себя прямого тока, так как он обладает меньшим падением напряжения, а следовательно, меньше рассеивает тепло в окружающее пространство и меньше нагревается.

Прямое падение напряжения можно также посмотреть и в даташитах. Например, прямое падение напряжения на диоде Шоттки 1N5817 можно найти из графика зависимости прямого тока от падения напряжения на диоде Шоттки

Читайте также:  Преобразователь напряжения sot23 5

график зависимости прямого тока от напряжения

В нашем случае если следовать графо-аналитическому способу, то мы как раз получаем значение 0,35 В

Диод Шоттки в ВЧ цепях

Также диоды Шоттки обладают быстрой скоростью переключения. Это значит, что мы можем использовать их в высокочастотных (ВЧ) цепях.

Итак, возьмем генератор частоты и выставим синус частотой в 60 Гц

Возьмем диод 1N4007 и диод Шоттки 1N5817. Подключим их по простой схеме однополупериодного выпрямителя

и будем снимать с них показания

Как вы видите, оба они прекрасно справляются со своей задачей по выпрямлению сигнала на частоте в 60 Гц.

Но что будет, если мы увеличим частоту до 300 кГц?

Ого! Диод Шоттки более-менее справляется со своей задачей, что нельзя сказать о простом диоде 1N4007. Простой диод не может справиться со своей задачей не пропускать обратный ток, поэтому на осциллограмме мы видим отрицательный выброс

Отсюда можно сделать вывод: диоды Шоттки рекомендуется использовать в ВЧ цепях.

Обратный ток утечки

Но раз уж диоды Шоттки такие крутые, то почему бы их не использовать везде? Почему мы до сих пор используем простые диоды?

Если мы подключим диод в обратном направлении, то он будет блокировать прохождение электрического тока. Это верно, но не совсем. Очень маленький ток все равно будет проходить через диод. В некоторых случаях это не принимают во внимание. Этот маленький ток называется обратным током утечки. На английский манер это звучит как reverse leakage current.

Он очень мал, но имеет место быть.

Проведем простой опыт. Возьмем лабораторный блок питания, выставим на нем 19 В и подадим это напряжение на диод в обратном направлении

обратный ток утечки диода

Как вы видите, его значение составляет 0,1 мкА.

Давайте теперь повторим этот же самый опыт с диодом Шоттки

обратный ток утечки диода Шоттки

Ого, уже почти 20 мкА! Ну да, в некоторых случаях это сущие копейки и ими можно пренебречь. Но есть схемы, где все-таки недопустим такой незначительный ток. Например, в схемах пикового детектора

В этом случае эти 20 мкА будут весьма значительны.

Но есть также еще один камень преткновения. С увеличением температуры обратный ток утечки возрастает в разы!

зависимость обратного тока утечки от температуры корпуса диода Шоттки

Поэтому, вы не можете использовать Шоттки везде в схемах.

Но и это еще не все. Обратное напряжение для диодов Шоттки в разы меньше, чем для простых выпрямительных диодов. Это можно также увидеть из даташита. Если для диода 1N4007 обратное напряжение составляет 1000 В

То для диода Шоттки 1N5817 это обратное напряжение уже будет составлять всего-то 20 В

Поэтому, если это напряжение превысит значение, которое описано в даташите, мы в итоге получим:

Применение диодов Шоттки

Диоды Шоттки находят достаточно широкое применение. Их можно найти везде, где требуется минимальное прямое падение напряжения, а также в цепях ВЧ. Чаще всего их можно увидеть в компьютерных блоках питания, а также в импульсных стабилизаторах напряжения.

Также эти диоды нашли применение в солнечных панелях, так как солнечные панели генерируют электрический ток только в светлое время суток. Чтобы в темное время суток не было обратного процесса потребления тока от аккумуляторов, в панели монтируют диоды Шоттки

В компьютерной технике чаще всего можно увидеть два диода в одном корпусе

При написании данной статьи использовался материал с этого видео

Источник

Оцените статью
Adblock
detector