Двухполупериодный выпрямитель с нулевой точкой трансформатора

Однофазный двухполупериодный выпрямитель с нулевым выводом

Однофазный двухполупериодный выпрямитель с нулевым выводом содержит трансформатор, вторичная обмотка которого имеет вывод от средней точки. Принципиальная схема выпрямителя и временная диаграмма, иллюстрирующая его работу, приведены на рис.3.4. Выходные обмотки относительно средней точки включены в противофазе. В этой схеме используются оба полупериода входного переменного напряжения, при этом обе половины вторичной обмотки трансформатора работают поочередно. Такой выпрямитель можно рассматривать как два однополупериодных, работающих на одну нагрузку. Для чисто активной нагрузки выпрямитель характеризуется следующими соотношениями между главными величинами:

1. Среднее значение выпрямленного напряжения:

.

Здесь U2 —действующее, a U2m, — амплитудное значение на вторичной полуобмотке трансформатора.

Следовательно, выражение значения вторичного напряжения в зависимости от выпрямленного, имеет вид:

Коэффициент фазной Э.Д.С. выпрямителя равен 1,11. КПД анодной цепи hа, учитывается при необходимости известным образом:

2. Коэффициент трансформации трансформатора при известном напряжении сети выбирается из соотношения:

4. Среднее значение тока через вентиль и через вторичную обмотку

5. Действующее значение тока через вторичную обмотку и через вентиль

6. Амплитудное значение первичного тока и тока через вентиль.

7. Действующее значение тока в первичной обмотке

8. Обратное напряжение, прикладываемое к закрытому диоду, равно сумме напряжении двух полуобмоток

9. Разложив выходное выпрямленное напряжение в ряд Фурье, получим:

Отсюда находится значение коэффициента пульсации схемы двухполупериодного выпрямления

что значительно меньше, чем в однополупериодном выпрямителе. Частота пульсации равна удвоенной частоте питающей сети .

10. Расчетные мощности обмоток трансформатора:

Типовая мощность трансформатора

11. Коэффициент использования трансформатора по мощности

В двухполупериодной схеме выпрямление по сравнению с однополупериодной значительно уменьшена амплитуда пульсации, а частота их в два раза выше, что облегчает фильтрацию.

На практике наряду с чисто активной нагрузкой часто встречаются случаи, когда нагрузка имеет индуктивный или емкостный характер. Индуктивный характер нагрузки имеет место в случае работы выпрямителя на обмотку двигателя или на индуктивный фильтр. При индуктивном характере нагрузки ее индуктивность и активное сопротивление считается включенными последовательно (рис.3.5, а). Индуктивный характер нагрузки приводит к уменьшению действующего и амплитудного значения вторичного тока и тока через вентиль и при достаточно большой индуктивности

Мощности обмоток и типовая мощность трансформатора также станут меньше по сравнению с чисто активной нагрузкой:

Коэффициент использования трансформатора улучшается:

Обратное напряжение на вентиле останется без изменений так же, как и среднее значение выпрямленного напряжения:

На рис.3.5 б показано изменение формы выпрямленного напряжения (тока) через вентиль при индуктивном характере нагрузки. За счет Э.Д.С. самоиндукции, возникающей в индуктивности и препятствующей спаданию тока в вентиле, наблюдается интервал одновременной работы двух вентилей g, называется периодом коммутации. Чем меньше индуктивность нагрузки, а также индуктивность рассеяния трансформатора, тем меньше угол коммутации g.

Для относительно маломощных источников питания, используемых в схемах информационной электроники, более типичным являются емкостный характер нагрузки, хотя бы потому, что большинство сглаживающих фильтров начинаются с емкости. Емкостный характер нагрузки приводит к сглаживанию выпрямленного тока и напряжения. При этом заряд и разряд емкости определяют импульсный режим работы схемы. На рис. 3.6 показана эквивалентная схема емкостной нагрузки (а) и диаграммы выпрямленного напряжения Ud, токов через вентили iа1, iа2 и обратного напряжения на одном из вентилей Uв1. Емкостная нагрузка рассматривается как параллельное соединение емкости нагрузки C и ее активного сопротивления Rн.

Читайте также:  Простой расчет выходного трансформатора лампового усилителя

При достаточно большой емкости напряжение на выходе выпрямителя возрастает почти до амплитудного значения вторичного напряжения, так как емкость быстро заряжается до этого напряжения, а в промежутках между полупериодами выпрямленного напряжения не успевает значительно разрядиться:

.

Чем больше емкость C и чем больше активное сопротивление Rн, тем ближе к указанному значению R2m находится среднее значение выпрямленного напряжения.

Для отпирания диода в этом случае не достаточно только наличие положительной полуволны вторичного напряжения на полуобмотках U2–1, U2–2: надо, чтобы эти напряжения превысили напряжение Ud, определяющее потенциал катода. Ток через диод протекает в течение времени этого превышения — см. рис. 3.6, б.

Емкостный характер нагрузки приводит также к расширению интервала действия обратного напряжения на вентиле.

Коэффициент использования трансформатора уменьшится по сравнению с активной нагрузкой.

Амплитуда пульсации уменьшится, и тем больше, чем больше C и Rн:

Преимущество схемы выпрямления с нулевым выводом заключается в минимальном количестве диодов, используемых для двухполупериодного выпрямления, а недостаток — наличие двойной вторичной обмотки на трансформаторе. Указанное преимущество существенного лишь для очень мощных выпрямителей, в которых используются сильноточные диоды, оснащенные специальным оборудованием для их охлаждения. В маломощных выпрямителях чаще используется двухполупериодная мостовая схема выпрямления.

Схемы двухполупериодного выпрямления не обладают свойством вынужденного подмагничивания сердечника трансформатора, что является их преимуществом.

Источник

Варианты схем двухполупериодных выпрямителей

Практически все электронные приборы работают от постоянного тока. Такой подход значительно снижает количество применяемых электронных компонентов, размер схемы и затраты на производство прибора.

Для преобразования переменного электрического напряжения в постоянное используются выпрямители. Статья даст подробное объяснение, что такое двухполупериодные выпрямители. Опишет их принцип работы, разновидности, основные преимущества и недостатки.

Назначение

Основное назначение однофазного двухполупериодного выпрямителя – это преобразование переменного тока в постоянный. Для того чтобы понять принцип действия такого выпрямителя, необходимо разобраться, что такое однополупериодное выпрямление.

Однополупериодный выпрямитель представляет собой устройство, которое состоит из трансформатора и одного диода (вентиля), подключенного ко вторичной обмотке трансформатора. Работает устройство следующим образом:

  1. Синусоидальный ток представляет собой цикл из 2 периодов: положительного и отрицательного.
  2. При протекании по цепи положительного полупериода, диод открывается и пропускает его дальше по цепи.
  3. При протекании отрицательного полупериода, диод не открывается и обрезает этот цикл.

Таким образом по цепи пропускается только ток с высокой пульсацией. Для того чтобы сгладить этот эффект, схема дополняется конденсатором с высокой емкостью. Основной недостаток такой схемы – большая потеря тока и необходимость использования мощных сглаживающих конденсаторов. Подобное устройство применяется, например, для зарядных блоков мобильных телефонов.

Двухполупериодный однофазный выпрямитель построен примерно по схожей схеме. Главное отличие заключается в добавлении 2-х и более полупроводниковых диодов для сглаживания обоих полупериодов. Существуют следующие разновидности подобных элементов:

Каждое устройство использует различное количество преобразователей, а значит имеет различный принцип работы.

Схема со средней точкой

Двухполупериодный выпрямитель со средней точкой предполагает наличие трансформатора с двумя вторичными обмотками, имеющими центральный вывод. Так же может использоваться трансформатор с одной вторичной обмоткой, но он будет обязательно иметь вывод из центра обмотки. Кроме того в составе схемы имеются 2 диода. Выпрямитель с нулевым выводом работает за счет образования разных по направленности ЭДС. Обе эти ЭДС равны по величине сформированного напряжения относительно центра или 0 точки. При работе такого трансформатора, ток на обоих полуобмотках сдвинут по фазе на 180 градусов.

Читайте также:  Trans50hz расчет силового трансформатора

Принцип работы данного выпрямителя следующий:

  1. На трансформаторе имеются выводы «w21» и «w22», которые имеют противоположные значения .
  2. К этим выводам подключаются аноды вентилей «vd1» и «vd2».
  3. Напряжение, прикладываемое к каждому диоду, имеет противоположную фазу («u21»–«u22» на схеме).
  4. За первый полупериод ток протекает через открытый диод «vd1». Через его анод протекает ток только с положительным потенциалом. В этот полупериод диод «vd2» находится в состоянии обратного смещения. Он заперт и не пропускает ток от обмотки «w22».
  5. Во время второго полупериода, ток с положительным потенциалом находится на аноде «vd2», открывая при этом диод. Диод пропускает через себя ток от обмотки «w22». Диод «vd1» при этом остается закрытым.

Двухполупериодная схема с нулевой точкой работает за счет отсутствия момента подмагничивания. Каждая половина вторичной обмотки работает в свой полупериод, а значит трансформатор находится в состоянии постоянной нагрузки.

Плюсы

У схемы с нулевым выходом есть преимущества только перед моделью однопериодного выпрямителя. Основные достоинства такой схемы:

  1. Во время работы осуществляется передача тока обоих потенциалов, тем самым сохраняется до 90% исходной энергии.
  2. 2 диода равномерно распределяют нагрузку, продлевая свой срок службы и заметно занижая нагрузку на всю схему.
  3. Схема двухполупериодного выпрямителя предполагает сглаженную пульсацию тока, без использования высоковольтных, емкостных конденсаторов.

Несмотря на ряд преимуществ, однофазные выпрямители с двумя диодами имеют свои недостатки, о которых будет рассказано ниже.

Минусы

Для работы такой сцепи обязательно необходим специальный трансформатор с 2 вторичными обмотками или одной разделенной, с нулевым выходом. Такие устройства сильно повышают затраты на производство высоковольтных, мощных приборов.

Также большим минусом является нагрузка обратным током. В схеме должны быть использованы диоды с номинальным напряжением до 1000 вольт и возможностью выдерживать температуру до +80 градусов. Если эти параметры не соблюдаются, то при закрытии диода будет формироваться повышенная температура и сопротивление. Превышения параметров приведет к пробою самого диода.

Следующим минусом является использование самого нулевого отвода. Подключение к нему предполагает только использования части доступной энергии, что сильно снижает потенциал таких устройств.

Диодный мост

Второй разновидностью является двухполупериодный мостовой выпрямитель. Данная модель наиболее распространена в цепях бытовых и промышленных электронных приборов. Состав электронного элемента:

  1. Трансформатор.
  2. 4 полупроводниковых диода.
  3. Конденсатор для сглаживания импульсов.
  4. Резистор как дополнительное сопротивление.

Работает устройство по мостовой схеме следующим образом:

  1. 4 полупроводниковых диода соединяются между собой в контур. Иными словами, они образуют пары.
  2. Одна сторона каждой пары соединена с выводами вторичной обмотки трансформатора.
  3. Две другие стороны соединены с цепью (нагрузкой). В случае с представленной схемой, нагрузкой является резистор «Rн».
  4. При формировании первого полупериода, диоды «vd1-vd4» открываются и пропускают ток к нагрузочному резистору Rн. Диодная пара «vd2-vd3» закрыта.
  5. Во время второго полупериода, 1 пара диодов (vd1-vd4) закрыта. В работу вступают диоды «vd2-vd3». Они открываются и перенаправляют ток к резистору Rн.

При такой работе остается эффект пульсации тока. Его сглаживают с помощью емкостного конденсатора.

Читайте также:  Тн36 в качестве выходных трансформаторов унч

Преимущества

Двухполупериодное мостовое выпрямление имеет одно неоспоримое преимущество перед схемами с меньшим количеством диодов. Оно заключается в величинах обратного выпрямленного тока и напряжения. Эти величины превышают те же параметры в других схемах в 2 и более раз. Тем самым, мостовая схема имеет значительно большее КПД.

Минусы

Недостатки диодного моста также заключены в количестве диодов. Каждые из 4 диодов сохраняют в закрытом положении величину обратного напряжения, которое равняется напряжению в однополупериодном выпрямителе. Тем самым, 4 диода не способствуют уменьшению нагрузки обратного тока на вторичную обмотку.

Несмотря на недостатки, схема мостового выпрямителя более распространенная. Она может монтироваться в качестве 4 диодов или в сборке. Сборка выглядит более практичным вариантом. Она занимает меньше места на печатной плате.

Сглаживание

Однофазный электрический двухполупериодный выпрямитель, независимо от того, сколько диодов он совмещает, требует дополнительного сглаживания выходного напряжения. Пульсация сильно влияет на работу самого устройства, для которого собран такой выпрямитель. Для сглаживания пульсации тока схема выпрямления дополняется фильтрами. Они могут быть собраны из:

  1. Высокоемкостного конденсатора. Такой фильтр является емкостным или «С-фильтром». В момент открытия диода, конденсатор заполняется током и играет роль емкости. В момент закрытия диода, происходит постепенная разрядка емкости, тем самым сглаживается напряжение без каких-либо скачков.
  2. Катушки индуктивности. Катушка индуктивности в качестве фильтра может использоваться в дополнение к конденсатору или вместо него. Работает такой фильтр по принципу отсутствия мгновенного изменения тока на катушке. При прохождении положительной полуволны по катушке, значение тока увеличивается плавно и медленно. При изменении полуволны на отрицательное значение, ток в катушке меняется с запаздыванием, что значительно снижает резкость пульсации.

При проектировании диодных выпрямителей учитывается нагрузка последующих элементов цепи. Так, если сопротивление после выпрямителя значительно малое, то использование емкостного фильтра нецелесообразно. При малой нагрузке потребуется более емкостный конденсатор. Таким образом для подобных схем с малым сопротивлением, более рационально использовать индуктивный фильтр.

Расчет значения диодов

Диоды в двухполупериодных выпрямителях должны выдерживать нагрузку переменным током, нагревом, обратным напряжением. При подборе диода необходимо учесть:

  1. Выходное напряжение до диода должно быть выше на 15–25% необходимого значения. Например, если требуется снять 12 вольт постоянного напряжения, то вторичная обмотка трансформатора должна выдавать не менее 15–17 вольт.
  2. Рабочий порог тока должен быть в полтора-два раза выше тока выпрямителя. Максимальный ток каждого диода в цепи можно найти с использованием следующей формулы:
  3. Выведенную по формуле величину можно использовать для определения значения обратного напряжения в состоянии закрытия. Данное значение должно быть в два раза больше выходного напряжения трансформатора, иначе возможен обратный p-n пробой. Делается это по такой формуле:

Также стоит учитывать материал, который используется в качестве полупроводника. Кремневые элементы более устойчивы к нагрузке обратным током и способны работать при температуре до +150 градусов. Германиевые менее устойчивы, их устойчивость к обратному напряжению составляет около 400 вольт.

Заключение

Однофазная схема двухполупериодного выпрямителя используется практически во всех современных приборах. Такие элементы более дешевые, устойчивые к нагрузкам, позволяют применять диодные сборки, уменьшая при этом общий размер цепи. Так же такие схемы легко проектировать, ремонтировать и дополнять самостоятельно, зная только принцип работы этих устройств.

Видео по теме

Источник

Оцените статью
Adblock
detector