Электронный коммутатор обмоток трансформатора лабораторных источников питания

Электронный коммутатор вторичных обмоток лабораторного БП.

Существует очень много различных схем для переключения отводов вторичных обмоток трансформатора в лабораторных блоках питания, для уменьшения рассеиваемой мощности выходных транзисторов БП, и для повышения КПД блоков питания при небольших выходных напряжений.
Есть схемы «переключалок» и на реле, и электронные варианты на симисторах, типа такой, как на рисунке ниже.

Симисторы ко вторичной обмотке силового трансформатора подключаются у такого переключателя следующим (или подобным) образом.

У всех этих схем имеются какие то свои определённые недостатки.
Схемы не реле издают щелчки, да и контакты реле не вечны, особенно в режиме стабилизации (ограничения) тока.
В схеме на симисторах подобного недостатка нет, она работает достаточно стабильно, но . бывают такие моменты, когда вышибает симисторы, особенно с мощным трансформатором. То-ли один симистор не успевает закрыться, когда уже второй открылся, то-ли ещё какие либо причины, но факт остаётся фактом — симисторы иногда со свистом вышибает.
Все эти недостатки скорее всего из-за того, что происходит коммутация обмоток с прерыванием тока. Что бы избавиться от этих недостатков, нужно уйти от прерывания тока, то есть не прерывать ток в нагрузке, а добавлять или уменьшать входное напряжение на блок питания.

Ниже Вашему вниманию предлагается схема электронного переключателя вторичных обмоток трансформатора, выполненного на тиристорах и лишённого этих недостатков. Её например можно применить в лабораторном блоке питания с выходным напряжением 0-35 вольт. Сразу скажу, что эта идея не моя, а предложенная kotosob-ом с форума сайта «Паяльник», я лишь предлагаю свой вариант реализации данной идеи. Для данной схемы абсолютно все равно, в какой момент полупериода включаться тиристоры и в какое время напряжение на выпрямителе станет больше или меньше. В этой схеме тиристоры играют роль управляемых выпрямительных диодов, которые при их включении замещают и запирают выпрямительные диоды мостика, или открывшиеся тиристоры с меньшим выходным напряжением.
Количество ячеек выпрямителя можно уменьшить или увеличить, в зависимости от потребностей.

Схема электронного коммутатора вторичных обмоток.

Схема работает следующим образом;
Если выходное напряжение блока питания не превышает 7,5 вольт, то все стабилитроны (ZD1-ZD3) и соответственно тиристоры закрыты, и напряжение на диодный мост подаётся с первой части (II) вторичной обмотки силового трансформатора.
При повышении выходного напряжения блока питания выше 7,5 вольт — открывается стабилитрон ZD1 и естественно транзистор VT1. Нагрузкой транзистора является светодиод симисторного оптрона, который отпирает симистор оптрона, и тот в свою очередь тиристоры VS1, VS2.
Тиристоры начинают работать как выпрямительные диоды, а так, как их выходное напряжение превышает на 8 вольт (минус напряжение падения на тиристорах) выходное напряжение подаваемое на верхнее плечо диодного моста, последние просто запираются и выходное напряжение выпрямителя повышается.
При дальнейшем увеличении выходного напряжения блока питания — открываются следующие стабилитроны и соответственно тиристоры и увеличивается выходное напряжение, подаваемое на конденсаторы фильтра.
При уменьшении выходного напряжения блока питания — всё происходит в обратном порядке. Закрываются стабилитроны и соответственно сопутствующие им тиристоры, и напряжение подаваемое на конденсаторы фильтра — уменьшается.

Пороги переключений здесь выбраны при следующих выходных напряжениях блока питания — 7,5; 15; 22,5 вольт, и зависят от применяемых стабилитронов. Соответственно напряжения подаваемые на вход блока питания равны 8, 16, 24, 32 вольт (без учёта падания напряжение на элементах выпрямителя).

Схема рассчитана на применение в ней тиристоров.
В схеме можно применять любые тиристоры с необходимым выходным током и допустимым напряжением, и если их нет, то можно поставить и любые симисторы. При применении последних, резисторы R1-R6 нужно исключить. И если применять симисторы серии ВТА, то их необходимо выбирать с максимальным током — не менее чем в 2-3 раза превышающий выходной максимальный ток блока питания.

При применении симисторов, чтобы схема работала должным образом, необходимо соблюсти следующее; Симисторы включаются вместо тиристоров следующим образом — 2-й анод симистора по даташиту — на место анода тиристора по схеме, -1-й анод симистора по даташиту — на место катода тиристора по схеме.
Лучше всего применять тиристоры (и симисторы) в изолированных корпусах, что бы их можно было установить на общий радиатор.
Так же оптроны, транзисторы и диоды можно применять любые в зависимости от имеющихся в наличии.
Вторичная обмотка силового трансформатора содержит отводы (секции) на необходимое выходное напряжение и намотана проводом с сечением в соответствии с необходимым током нагрузки.
В описываемой схеме, все секции вторичной обмотки одинаковы и имеют выходное напряжение 8 вольт.
Вы вполне можете сами выбрать по своему усмотрению пороги переключений, количество секций (отводов) вторичной обмотки трансформатора и количество необходимых Вам каскадов (ячеек) выпрямителя.

Читайте также:  Как трансформатор меняет частоту

Схема питается от дополнительного источника с выходным напряжением 5 вольт. Можно использовать дополнительный источник с выходным напряжением 5-24 вольт, но в этом случае необходимо будет подобрать резисторы в коллекторных цепях транзисторов так, что бы при открытии транзистора, ток через светодиод оптрона не превышал 10-15 мА.

Да, описанная схема обладает гистерезисом, так как стабилитроны здесь открываются плавно. Для простых БП это вполне приемлемо, а там, где необходим БП со стабилизацией тока и быстрых изменений напряжения на нагрузке, схему на стабилитронах лучше всего заменить схемой на компараторах и выставить гистерезис в пределах до 0,5 вольт.

Источник

Электронный коммутатор обмоток трансформатора лабораторных источников питания

Регулируемый источник питания является обязательным атрибутом на столе радиолюбителя, но из-за их немалой стоимости многие предпочитают сделать лабораторный блок питания своими руками.
Блоки питания бывают линейными и импульсными, основное преимущество импульсных схем — это их высокий КПД (>90%). Линейные схемы имеют низких КПД, но обеспечивают более чистое выходное напряжение, которые свойственны импульсным источникам питания.

Линейные источники питания лучше, но при конструировании таких источников питания большой мощности возникают проблемы с охлаждением силовых транзисторов.

В чем же заключается основная сложность?. Допустим мы собрали блок питания с регулировкой напряжения от нуля до 30 Вольт и ток от нуля до 5 Ампер. И если мы выставим на выходе малое напряжение и большой ток, например 3 Вольта и 5 Ампер, на выходе получим мощность около 9 Ватт, при этом на транзисторе будет падение напряжения как минимум 27 Вольт, с учетом тока в 5 ампер, получаем около 140 ватт мощности в виде бесполезного тепла, которое нужно отводить.

Есть два основных варианта решения этой проблемы:

  1. Громадный радиатор с вентилятором для охлаждения силового транзистора;
  2. Система переключения обмоток трансформатора.

Второй вариант наиболее предпочтителен, и позволит избавиться от массивных радиаторов и шумного вентилятора.

Принцип работы очень прост — при малых выходных напряжениях на вход также подается малое напряжение. Таким образом мощность рассеиваемая на транзисторе будет гораздо меньше, КПД увеличивается в разы.

Но для того, чтобы задействовать коммутатор, нужно иметь трансформатор с несколькими вторичными обмотками, желательно с полностью одинаковыми параметрами, например три обмотки по 12 Вольт.

Перед вами сейчас самая простая и безотказная схема релейного коммутатора.

Имеем пару стабилитронов на одинаковое напряжения и пару реле, которыми управляют маломощные транзисторы обратной проводимости. Точка «А» подключается к выходу лабораторного блока питания. Масса питания общая. Схема коммутатора питается от отдельной, маломощной обмотки.

Схема работает следующим образом, если напряжение на выходе лабораторного блока питание ниже 12 Вольт, стабилитрон закрыт. Если напряжение на выходе лабораторного блока питания больше 12 Вольт первый стабилитрон моментально откроется, сигнал поступит на базу первого транзистора, отпирая его, через открытый переход поступит питание на обмотку реле, как следствие — реле также сработает, коммутируя соответствующую обмотку. Теперь на вход стабилизатора поступает напряжение 24 Вольта.

При увеличении выходного напряжения блока питания до порогового значения, а это сумма напряжений обеих стабилитронов, точно таким же образом откроется второй стабилитрон, что приведёт к отпиранию второго транзистора и сработкет второго реле, и на вход стабилизатора поступит полное напряжение со всех трех последовательно соединенных обмоток трансформатора.

В этот момент первое реле тоже находится во включенном состоянии, но так как питание поступает по второму реле, на выходное напряжение это не влияет. Добавив в схему еще один транзистор со стабилитроном, в эти моменты можно отключать его.

Если напряжение на выходе источника питания больше значения суммы напряжений стабилизации стабилитронов откроется третий транзистор, шунтируя базу транзистора, который управляет первой реле на массу питания, тот закроется и отключит реле.

Стоит заметить, что через стабилитроны и переходы база эмиттер протекают ничтожно малые токи.

В схеме использованы реле с напряжением катушки 12 Вольт.

Диоды предназначены для защиты от пробоя управляющих транзисторов напряжением самоиндукции с обмоток реле во время их отключения.

Ток коммутации реле зависит от вашего блока питания, если конструируете лабораторный блок питания на 5 Ампер, реле желательно взять с двукратным запасом, например 10-12 Ампер.

Базовые ограничительные резисторы для транзисторов могут иметь сопротивление от 6,8 до 15 кОм. Сами транзисторы обратной проводимости, можно взять любые малой и средней мощности.

К недостаткам схемы можно отнести использование электромагнитного реле. Должен сказать, что во многих промышленных блоках питания применяется именно такое решение. Реле издают звук во время переключения, а контакты не вечные.

Читайте также:  Трансформаторы космической энергии проводники

Есть системы, где переключающим элементом является симистор, но такие коммутаторы также не идеальны, часто возникают проблемы с управлением, а на самих симисторах будут потери, следовательно и нагрев, к тому же симисторные схемы довольно сложны.

Питать схему коммутации можно как от отдельной обмоткой, которая намотана на основном трансформаторе, так и от отдельного маломощного блока питания. Напряжение этого источника должно быть от 18 до 20 вольт, при токе в 200-300мА.

Источник

Характеристика и схемы автоматического переключения обмоток трансформатора в блоке питания

В состав любого измерительного комплекса, имеющегося в современной лаборатории или на рабочем месте радиолюбителя, обязательно входит недорогой и надежный блок питания (БП). Для того чтобы улучшить его эксплуатационные характеристики, специалисты советуют применить автоматическое переключение трансформаторных обмоток в блоке питания. Это существенно снижает паразитное рассеяние мощности в выходных каскадах и облегчает режим работы любого лабораторного источника тока.

Указанный подход особо востребован в тех случаях, когда в рабочих условиях востребован БП с диапазоном регулировки напряжения 50 Вольт, например, и с током нагрузки не менее 5 Ампер. Промышленные источники с такими заявленными характеристиками для рядового пользователя недоступны из-за своей высокой стоимости. Как раз это и вынуждает его применять принцип и схему автоматического переключения обмоток трансформатора в блоке питания.

Для чего используется система переключений обмоток трансформатора

При самостоятельном изготовлении блока питания с такими характеристиками исполнителю приходится решать целый ряд проблем, важнейшая из которых – обеспечение требуемой передаточной характеристики во всем спектре выходных напряжений. Рассмотрим пример, когда имеется источник питания, рассчитанный на максимальное напряжение до 50-ти Вольт.

Если в определенной ситуации потребовалось установить точное значение выходного напряжения всего в 5 Вольт при токе в нагрузке 5 Ампер – в выходных цепях будет бесполезно рассеиваться мощность 225 Ватт. Эта цифра получается из расчета 50-5=45 (Вольт), что после умножения на 5 Ампер дает означенною величину потерянной без всякого эффекта мощности.

Важно! В данной ситуации КПД такого источника будет предельно низким.

Для устранения указанного недостатка приходится принимать специальные меры, позволяющие существенно снизить потери в индуктивных выходных каскадах. Для этого потребуется предпринять следующее:

  • Каким-то образом коммутировать вторичные обмотки силового трансформатора (ТС), что позволит при необходимости отбирать от него меньшую по величине мощность.
  • Использовать более экономичный импульсный режим преобразования электроэнергии.
  • Воспользоваться заранее изготовленным предварительным регулятором, работающим по тому же импульсному принципу.

С другой стороны, общеизвестно, что надежный и многофункциональный лабораторный блок питания не должен иметь импульсных узлов, приводящих к появлению нелинейных искажений. Более рациональным и эффективным в этом случае считается чисто линейное преобразование.

Дополнительная информация: для не очень сложных любительских схем вполне сгодится обычный импульсный блок питания.

Однако для наладки более точной электронной аппаратуры потребуется стандартное устройство, содержащее узлы с линейной передаточной характеристикой.

Принцип работы

Для решения этой проблемы при разработке промышленных источников питания инженеры пошли по первому пути, предполагающему наличие во вторичной обмотке нескольких коммутируемых отводов. Для их переключения применяются самые различные способы, включая следующие варианты:

  • Ручная коммутация (посредством галетных переключателей, например).
  • Использование типовых коммутирующих реле, управляемых отдельным электронным узлом.
  • Включение в выходную цепочку быстродействующих полупроводниковых элементов (симисторов).
  • Применение в качестве управляющего узла современных контроллеров.

Такая коммутация позволяет использовать только часть вторичной обмотки, соответствующую требуемому значению выходного напряжения (в приведенном выше примере – это 5 Вольт).

Таким образом, принцип работы такой схемы заключается в искусственной регулировке выходного переменного напряжения с установкой его фиксированной величины, меньшей полного значения выхода трансформатора. Данный подход исключает неоправданный расход энергии, идущей на бессмысленный нагрев элементов выпрямителя (в типовых схемах эту функцию выполняют силовые транзисторы).

Обратите внимание! Для повышения КПД такой схемы и снижения степени нагрева сердечника трансформатора специалисты советуют увеличивать число отводов вторичной обмотки до максимального значения.

После такой доработки выходных цепей к ним подключаются контакты галетного переключателя, посредством которого можно будет устанавливать требуемый режим питания по выходу. Единственное неудобство этого метода – увеличение числа органов управления выходным напряжением. Неэффективность механического способа подключения выходных обмоток трансформатора заставляет искать новые (более рациональные) решения.

Преимущества

Применение принципа дробления выходного напряжения на небольшие части обеспечивает следующие преимущества:

  • Возможность на свое усмотрение устанавливать на выходе устройства широкий набор рабочих напряжений.
  • Снизить потери в выходных каскадах блока питания.
  • Повысить общий КПД и, в конечном счете, сэкономить на расходе электроэнергии.

Все эти преимущества удается получить лишь при условии эффективности механических способов управления или электронных схем коммутации. Порядок построения каждой из них будет рассмотрен в следующем разделе.

Варианты схематических решений

При конструировании блоков питания, обеспечивающих экономное расходование электроэнергии и исключающих тепловые потери в сердечнике трансформатора, возможны следующие варианты:

  • Установка в выходных цепях обычных переключателей витков.
  • Применение в тех же цепочках коммутаторов релейного типа.
  • Использование в выходных управляющих линиях современных симисторных переключателей.
  • Применение в преобразовательной схеме программируемого электронного коммутатора (контроллера).
Читайте также:  Прогрев бетона проводом птпж без трансформатора

Далее каждый из этих способов управления выходным напряжением будет рассмотрен более подробно.

Простой блок переключения

Этот тип коммутатора может быть выполнен в виде обычного галетного переключателя, рассчитанного на определенное число положений ручки управления. Каждому из них соответствует заданное количество витков вторичной катушки трансформатора, с увеличением числа которых возрастает его выходное напряжение.

Важно! К преимуществам этого способа следует отнести простоту реализации, а к недостаткам – неудобство постоянного переключения ручки, которой приходится управлять вручную.

Кроме того, коммутации в этом случае происходят очень медленно и приводят к паразитным переходным процессам в выходных цепях, обладающих высокой индуктивностью.

Релейный

Принцип этого метода управления выходными каскадами БП основан на применении специальных коммутирующих элементов, называемых реле. С их помощью удается существенно повысить скорость переключений и исключить появления больших всплесков напряжения (тока). Со схемой такого коммутатора можно ознакомиться на приведенном справа рисунке.

Из нее видно, что для управления положением контактов реле используется отдельная катушка, напряжение с которой выпрямляется и подается на простейший электронный модуль, выполненный на основе транзисторов.

Обратите внимание! В этом случае исполнительной частью устройства коммутации являются контакты реле, срабатывающие намного быстрее человеческой руки, переключающей галетный прибор.

Поэтому переходные процессы в данной схеме заметно меньше, а опасность возникновения перенапряжений в выходных цепях существенно снижается. С другой стороны, контакты реле со временем снашиваются, а сильное искрообразование зачастую приводит к нарушениям в нормальной работе преобразователя. Гораздо надежнее некоторые типы полупроводниковых приборов (симисторы, например), при коммутации которых в цепях исключаются паразитные помехи.

Симисторный

Симисторная схема управления переключением обмоток (точнее – ее пример) приведена на рисунке слева. В данной ситуации коммутация витков выходной катушки осуществляется посредством электронных переходов специальных полупроводниковых приборов – симисторов. Для управления их переключением в схеме предусмотрен электронный модуль, срабатывающий по сигналу, поступающему от пользователя.

В данном случае для развязки управляющих и коммутирующих цепей применены оптические пары того же симисторного типа. Сигнал на их входные элементы поступает с выходов транзисторов, управляемых электронным коммутатором на операционных усилителях. В состав симистороной схемы управления выходными напряжениями входят:

  • Блок питания на стабилизаторе VR1.
  • Модуль задержки включения, выполненный на транзисторах VT1-VT3.
  • Блок индикации на светодиодных элементах LED1-LED3.
  • Типовой сдвоенный компаратор LM393.
  • Логика типа 74HC86.
  • Оптроны MOC3083.
  • Входной делитель R6-R7.

В процессе настройки этой схемы резистором R7 выставляется фиксированное входное напряжение, поделенное делителем R6-R7 на десять. Пример: при поступлении с БП напряжения 20 Вольт, его величина на не инвертируемых входах LM393 составит всего 2 Вольта. А резисторы R8, R10 служат для выставления пороговых напряжений переключения

Переключатель обмоток трансформатора на контроллере

Принцип работы программируемого блока состоит в следующем:

  • Каждому из фиксируемых значений выходного напряжения (согласно требованиям задания) ставится в соответствие определенный двоичный код.
  • Комбинация из нулей и единичек определяет нужное число обмоток, подключаемых к выходу трансформатора блока питания.
  • За счет их изменения и происходит управление выходными цепями.
  • За смену кода ответственен специальный контроллер, управляющий работой всей схемы.

Дополнительная информация! Особенностью данного метода является то, что электронный модуль не измеряет текущее выходное напряжение, а только индицирует его расчетное значение.

Применение в управляющей схеме современного микроконтроллера позволяет существенно сократить общее число комплектующих изделий. Это не только заметно упрощает проектирование и изготовление печатных плат, но и облегчает все процедуры, связанные с наладкой устройства в целом. На приведенном выше рисунке представлена схема управления выходным каскадом блока, выполненная на микроконтроллере PIC16F628A-1/P (DD1). Дополнительный узел – регистр сохранения данных ЭКР1554ИР22 (DD2).

Конечно, для реализации этого принципа управления можно было обойтись простейшим и более дешевым микроконтроллером PIC12F629. Он обычно применяется в сочетании с двумя сдвиговыми регистрами, преобразующими последовательный код в его параллельную копию. Но при этом дешевое устройство не обеспечивало бы требуемую устойчивость к воздействию импульсных помех, которые, как известно, всегда присутствуют при коммутации индуктивных цепей.

Обратите внимание! Указанное замечание непосредственно касается нашего случая, когда схемное решение предполагает использование обладающих большой индуктивностью трансформаторных обмоток.

В заключительной части тематического обзора отметим, что все известные способы переключения выходных обмоток трансформатора делятся на механические (с использованием галетного переключателя, например) и автоматические. Второй способ управления успешно реализуется за счет появления быстродействующих электронных элементов и комплектующих. При их использовании не только повышается скорость предполагаемых коммутаций, но и возрастает уровень защищенности схемы от воздействия паразитных импульсных помех.

Источник

Оцените статью
Adblock
detector