Фактическая нагрузка трансформатора это

Нагрузочная способность силовых трансформаторов

При выборе мощности трансформаторов нельзя руководствоваться только их номинальной мощностью, так как в реальных условиях температура охлаждающей среды, условия установки трансформатора могут быть отличными от принятых. Нагрузка трансформатора меняется в течение суток, и если мощность выбрать по максимальной нагрузке, то в периоды спада ее трансформатор будет не загружен, т.е. недоиспользована его мощность. Опыт эксплуатации показывает, что трансформатор может работать часть суток с перегрузкой, если в другую часть суток его нагрузка меньше номинальной. Критерием различных режимов является износ изоляции трансформатора.

Нагрузочная способность трансформатора

Нагрузочная способность трансформатора — это совокупность допустимых нагрузок и перегрузок.

Допустимая нагрузка — это длительная нагрузка, при которой расчетный износ изоляции обмоток от нагрева не превосходит износ, соответствующий номинальному режиму работы.

Перегрузка трансформатора — режим, при котором расчетный износ изоляции обмоток превосходит износ, соответствующий поминальному режиму работы. Такой режим возникает, если нагрузка окажется больше номинальной мощности трансформатора или температура охлаждающей среды больше принятой расчетной.

Рис.1. Построение двухступенчатого графика по
суточному графику нагрузки трансформатора

Допустимые систематические нагрузки

Допустимые систематические нагрузки трансформатора больше его номинальной мощности возможны за счет неравномерности нагрузки в течение суток. На рис.1 изображен суточный график нагрузки, из которого видно, что в ночные, утренние и дневные часы трансформатор недогружен, а во время вечернего максимума перегружен. При недогрузке износ изоляции мал, а во время перегрузки значительно увеличивается. Максимально допустимая систематическая нагрузка определяется при условии, что наибольшая температура обмотки +140°С, наибольшая температура масла в верхних слоях +95°С и износ изоляции за время максимальной нагрузки такой же, как при работе трансформатора при постоянной номинальной нагрузке, когда температура наиболее нагретой точки не превышает +98°С (ГОСТ 14209-85). Для подсчета допустимой систематической нагрузки действительный график преобразуется в двухступенчатый (см. рис.1).

Коэффициент начальной нагрузки эквивалентного графика определяется по выражению

Коэффициент максимальной нагрузки в интервале h=Δh1+Δh2+. +Δhp.

Допустимые аварийные перегрузки трансформаторов при
выборе их номинальной мощности для промышленных подстанций
при предшествующей нагрузке, не превышающей 0,8
(по ГОСТ 14209-85)

Точный расчет максимально допустимых нагрузок и аварийных перегрузок, а также износ витковой изоляции производится на ЭВМ по вспомогательным схемам, приведенным в ГОСТ 14209-85.

Анализируя приведенные в ГОСТ 14209-85 таблицы допустимых аварийных перегрузок, можно сделать вывод, что трансформаторы с системами охлаждения М, Д, ДЦ и Ц при первоначальной нагрузке не более 0.9Sном допускают перегрузку на 40% в течение 6ч при температуре охлаждающего воздуха не более +20°С и 30% в течение 4ч при температуре охлаждающего воздуха +30°С.

Допустимые нагрузки и аварийные перегрузки для трансформаторов мощностью свыше 100 MBА устанавливаются в инструкциях по эксплуатации; для сухих трансформаторов и трансформаторов с негорючим жидким диэлектриком — в стандартах или технических условиях на конкретные типы трансформаторов (ГОСТ 11677-85).

Источник

Расчетные формулы основных параметров трансформаторов

Представляю вашему вниманию таблицу с расчетными формулами для определения основных параметров силовых трансформаторов, а также таблицу коэффициента изменения потерь kн.п. в трансформаторах.

Таблица 1 – Расчетные формулы для определения основных параметров трансформаторов

Исходные данные, которые приводятся в паспорте (шильдике) на трансформатор:

  • Потери холостого хода ∆Рх, кВт;
  • Потери короткого замыкания ∆Pк, кВт;
  • Напряжения короткого замыкания Uк, %;
  • Ток холостого хода Iхх,%.

Таблица 2 – Коэффициент изменения потерь в трансформаторах

1. Справочная книга электрика. В.И. Григорьева, 2004 г.

Поделиться в социальных сетях

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» и «PayPal» .

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Разобравшись в предыдущей статье с принципом действия и конструкцией УЗО. Теперь перейдем.

В предыдущей статье мы рассмотрели условия выбора плавких предохранителей. В этой же статье, речь.

В данном примере требуется выбрать сечение проводов (по нагреву, по току и по потере напряжения) для.

Выбор сечения кабеля на напряжение до 1000 В независимо это электродвигатель или другая нагрузка. Сводится.

Потеря напряжения в трехфазной линии с несколькими нагрузками вдоль линии определяется как сумма потерь.

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.

Источник

Измерение фактической нагрузки вторичной цепи трансформатора напряжения НТМИ-10

Здравствуйте, уважаемые гости и читатели сайта «Заметки электрика».

На одной из обслуживаемых мной подстанций напряжением 10 (кВ) не так давно мы произвели замену всех индукционных счетчиков типа САЗУ-И670М на электронные ПСЧ-4ТМ.05М.01 (вот схема подключения трехфазного счетчика в сеть 10 (кВ).

Причин для замены было несколько. Класс точности 2,0 у САЗУ-И670М не соответствовал современным требованиям к классу точности для расчетных счетчиков (подробнее читайте здесь). Также не сводился баланс между приборами учета вводных и отходящих фидеров.

Как говорится, сделали хорошее дело, но здесь есть существенный нюанс, о котором я расскажу в данной статье.

Дело в том, что потребляемая полная мощность индукционного счетчика САЗУ-И670М в каждой цепи напряжения находится в пределах от 5 (ВА) до 6 (ВА), а у электронного ПСЧ-4ТМ.05М.01 — не более 0,8 (ВА), т.е. меньше практически в 7-8 раз.

Вот партия новых счетчиков ПСЧ-4ТМ.05М.01.

Класс точности у ПСЧ-4ТМ.05М.01 для активной энергии составляет 0,5S, а для реактивной — 1. Напряжение (В): 3х(57,7-115)-(100-200).

Соответственно, что после замены счетчиков мощность нагрузки вторичной обмотки трансформатора напряжения (ТН) значительно уменьшилась. В связи с этим нужно измерить фактическую мощность вторичных цепей ТН и убедиться в том, что она не уменьшилась ниже требуемого уровня. Все бы ничего, но эти счетчики входят в коммерческую систему учета электроэнергии (аналог системы АСТУЭ), а значит малейшая погрешность при учете потребляемой электроэнергии напрямую влияет на дополнительные финансовые затраты для предприятия.

А какой требуемый уровень нагрузки должен быть у ТН? Об этом читайте чуть ниже.

На подстанции, где производилась замена счетчиков имеется 4 секции КРУ-10 (кВ). В качестве примера я покажу замер и расчет фактической мощности нагрузки ТН-4 сек.

Технические данные НТМИ-10 и место его установки

В качестве измерительного трансформатора напряжения применяется трансформатор НТМИ-10. Он является трехфазным трехобмоточным, масляным, с дополнительной обмоткой для контроля изоляции. Более подробно о нем читайте в статье про конструкцию и схему подключения НТМИ-10.

Технические данные НТМИ-10 (кратко):

  • коэффициент трансформации основной обмотки 10000/100 (В)
  • номинальная мощность 120 (ВА) для класса точности 0,5
  • номинальное вторичное напряжение основной обмотки 100 (В)
  • группа соединения Yo/Yo-12

НТМИ-10 установлен на выкатном элементе (каретке).

Силовые контакты (разъемы) выкатного элемента.

Вторичные цепи соединяются с релейным отсеком с помощью соединительной гребенки.

В 2011 году (еще до замены счетчиков) к нам приезжала метрологическая служба (у моей электролаборатории нет права проводить поверки измерительных трансформаторов) и проводила поверку этого трансформатора напряжения, где в том числе и измеряла его фактическую нагрузку, а также потери напряжения в цепях от ТН до счетчиков.

Вот скан-копия этого протокола:

Как видно из протокола, то фактическая нагрузка ТН до замены счетчиков была 45 (ВА). Межповерочный интервал составляет 4 года, а значит следующую поверку нужно проводить только в 2015 году.

Но в связи с изменением нагрузки ТН, по рекомендациям Государственной системы обеспечения единства измерений (методика измерений МИ 3195-2009 «Мощность нагрузки трансформаторов напряжения. Методика выполнения измерений без отключения цепей», п.13.3) нужно обязательно проводить его внеочередную поверку, т.е. руководителю предприятия нужно будет оплатить визит метрологов, которые проведут все необходимые замеры и предоставят официальный протокол поверки ТН.

Пока метрологи не приехали, я решил самостоятельно измерить и рассчитать фактическую мощность нагрузки ТН, и сделать собственный вывод о необходимости установки догрузочных резисторов.

Измерения я буду проводить по рекомендациям методики МИ 3195-2009 «Мощность нагрузки трансформаторов напряжения. Методика выполнения измерений без отключения цепей». Для этого мне понадобятся электроизмерительные клещи, прошедшие поверку (в моем случае достаточно калибровки). Относительная погрешность клещей при измерении токов и напряжений должна быть не более 7%.

Я буду использовать электроизмерительные клещи Mustech М266С — по перечисленным выше требованиям они вполне подходят. Для ознакомления представлю Вашему вниманию несколько полезных статей по работе с электроизмерительными приборами:

Как измерить нагрузку ТН

Схема вторичных цепей трансформатора напряжения НТМИ-10.

Небольшие пояснения к схеме:

100 (В)

  • А601, В600, С601, О601 — маркировка выводов основной обмотки (звезда)
  • Н601, Н600 — маркировка выводов дополнительной обмотки (разомкнутый треугольник)
  • ДС — антирезонансные добавочные сопротивления 25 (Ом) мощностью 400 (Вт)
  • ПИ — вольтметровый переключатель
  • V — киловольтметр
  • Тип автомата цепей напряжения

    100 (В) — АП-50Б (с блок-контактами, действующими через указательное реле в предупредительную сигнализацию).

    На данный момент к основной обмотке ТН подключены 7 электронных счетчиков электрической энергии ПСЧ-4ТМ.05М.01 и два киловольтметра: один через вольтметровый переключатель, а другой — на щите управления. Тип киловольтметров — Э30.

    Вольтметровый переключатель собран на 6 положений: АВ, ВС, АС, АО, ВО и СО.

    К дополнительной обмотке подключено реле контроля изоляции РН-53/60Д (1 шт.).

    Для расчета фактической мощности нагрузки ТН, мне достаточно будет измерить следующие параметры:

    • ток в фазе А (Iа)
    • ток в фазе В (Ib)
    • ток в фазе С (Ic)
    • фазное напряжение Uао
    • фазное напряжение Ubо
    • фазное напряжение Ucо

    Измерение я буду проводить при работающем трансформаторе напряжения и без разрыва вторичных цепей.

    Вся нагрузка основной обмотки проходит через автомат цепей напряжения

    100 (В), поэтому удобнее всего замер фазных токов выполнить на его выводах.

    Вот измеренные значения токов по каждой фазе:

    Фазные напряжения удобнее всего измерить на вольтметровом переключателе.

    Вот измеренные значения фазных напряжений:

    Рассчитаем мощность каждой фазы ТН.

    Sa = Iа·Uао = 0,07·60,5 = 4,24 (ВА)

    Sb = Ib·Ubо = 0,08·58,5 = 4,68 (ВА)

    Sс = Iс·Uсо = 0,11·58,9 = 6,48 (ВА)

    Вы наверное успели заметить, что измеренные фазные напряжения ТН несколько отличаются от номинального фазного значения 57,7 (В). Это связано с принудительным завышением напряжения на секции. Также на КРУ-4 секции присутствует перекос по напряжению — на него особо не обращайте внимания, т.к. к этой секции подключены двухфазные потребители на стороне 10 (кВ).

    В таком случае нужно сделать пересчет потребляемой мощности каждой фазы ТН.

    Sa’ = Sa·(Uном/Uао)·(Uном/Uао) = 4,24·(57,7/60,5)·(57,7/60,5)= 3,85 (ВА)

    Sb’ = Sb·(Uном/Ubо)·(Uном/Ubо) = 4,68·(57,7/58,5)·(57,7/58,5) = 4,55 (ВА)

    Sс’ = Sс·(Uном/Uсо)·(Uном/Uсо)= 6,48·(57,7/58,9)·(57,7/58,9) = 6,21 (ВА)

    Рассчитываем фактическую полную мощность нагрузки ТН, которая для трехобмоточного трансформатора напряжения типа НТМИ-10 равна сумме мощностей каждой фазы ТН основной обмотки с учетом мощности нагрузки дополнительной обмотки:

    К дополнительной обмотке подключено реле контроля изоляции РН-53/60Д (1 шт.). По паспортным данным его потребляемая мощность при минимальной уставке составляет не более 0,5 (ВА), а при напряжении 100 (В) — 5 (ВА). В расчетах я возьму 0,5 (ВА), т.к. реле не постоянно находится в работе, а только в случае «заземления» фазы на стороне 10 (кВ).

    Sтн = Sa’ + Sb’ + Sс’ + Sдоп. = 3,85 + 4,55 + 6,21 + 0,5 = 15,11 (ВА)

    Полученную мощность сравниваем с номинальной мощностью ТН. Напомню, что номинальная мощность рассматриваемого трансформатора напряжения НТМИ-10 составляет 120 (ВА). Вот что у меня получилось:

    • до замены счетчиков мощность ТН составляла 45 (ВА), что соответствовало 37,5% от номинальной мощности ТН
    • после замены счетчиков мощность ТН стала 15,11 (ВА), что соответствует 12,59% от номинальной мощности ТН

    Таким образом, после замены индукционных счетчиков электроэнергии САЗУ-И670М на электронные ПСЧ-4ТМ.05М.01 фактическая мощность нагрузки ТН получилась ниже требуемого значения, что приводит к большим погрешностям и к работе ТН не в заданном классе точности. Вот этот самый нюанс и есть, про который я говорил в самом начале статьи.

    В методике измерений МИ 3023-2006 «Рекомендации. Нормализация нагрузки вторичных цепей измерительных трансформаторов напряжения», п.3 говорится, что фактическая мощность трансформатора напряжения должна находиться в пределах от 25% до 100% от его номинальной мощности (если иного требования не указано в паспорте на конкретный тип ТН).

    В нашем случае для обеспечения заданного класса точности ТН есть два варианта. Первый вариант — это замена действующего ТН на ТН с меньшей номинальной мощностью. Второй вариант — это установка догрузочных резисторов во вторичную цепь ТН. Естественно, что второй вариант более экономичный и более простой, поэтому я склонен именно к нему.

    Для увеличения фактической нагрузки в необходимые пределы нужно приобрести и установить догрузочные резисторы. В этой же МИ 3023-2006, п.3, говорится, что их мощность должна быть выбрана таким образом, чтобы фактическая мощность ТН с учетом догрузочных резисторов соответствовала (50±10)% от номинальной мощности ТН.

    Как видите, с одной стороны сделали хорошее и доброе дело — заменили старенькие индукционные счетчики на новые электронные, а с другой стороны поимели дополнительные затраты на приобретение догрузочных резисторов, на проект на их установку, на монтажные работы (этот пункт будет осуществлен своими руками) и на внеочередные поверки ТН (до установки резисторов во вторичную цепь и после).

    Источник

    Читайте также:  Паспорт трансформатора напряжения ном
    Оцените статью
    Adblock
    detector
    Наименование величин Формулы Обозначение
    Токи обмоток I1, I2 — токи первичной и вторичной обмоток, А;
    U1, U2 — то же линейное напряжение, В;
    Коэффициент трансформации rк, хк, zк – активные, реактивные и полное сопротивления КЗ фазы трансформатора
    Активные потери мощности в трансформаторе при нагрузке ∆Рх – активные потери холостого хода, кВт;
    ∆Рк – активные нагрузочные потери в обмотках при номинальном токе, кВт;
    kз – коэффициент загрузки;
    Sт.ном. – номинальная мощность трансформатора.
    Приведенные активные потери мощности в трансформаторе при нагрузке S – фактическая нагрузка трансформатора;
    kи.п. – коэффициент изменения потерь, кВт/квар;
    ∆Qх – реактивные потери мощности холостого хода;
    ∆Qк – реактивные потери мощности КЗ;
    Значения kи.п. даны ниже.
    Напряжение КЗ Uк – напряжение КЗ, В или %;
    Uк.а, Uк.х – активная и реактивная составляющие напряжения КЗ, В или %.
    Мощность и ток КЗ трансформатора U1ф – фазное напряжение первичной обмотки, В
    Ф – фазный поток;
    Ф = Вст*Qст мкс;
    Вст –индукция в стержне;
    Вст = 13 – 14,5 103 Гс;
    Qст – активное сечение стержня, см 2
    Активное и реактивное сопротивление двухобмоточного трансформатора, Ом Если нагрузка смешанная (активная и индуктивная), то вторым членом можно пренебречь
    Потери напряжения при пуске асинхронного короткозамкнутого двигателя (приближенно) ∆U – потеря напряжения, %;
    Sдв. – номинальная мощность двигателя, кВА;
    S2 – мощность других потребителей, присоединенных к шинам трансформаторов, кВА;
    Ki – кратность пускового тока относительно номинального.
    КПД трансформатора