Генератор переменного тока трансформатор доклад

Физика

Генератор переменного тока (Реферат)

Электрический ток вырабатывается в генераторах – устройствах, преобразующих энергию того или иного вида в электрическую энергию. К генераторам относятся гальванические элементы, электростатические машины, термобатареи, солнечные батареи и т. п. Область применения каждого из перечисленных видов генераторов электроэнергии определяется их характеристиками. Так, электростатические машины создают высокую разность потенциалов, но неспособны создать в цепи сколько-нибудь значительную силу тока. Гальванические элементы могут дать большой ток, но продолжительность их действия невелика.

Преобладающую роль в наше время играют электромеханические индукционные генераторы переменного тока. В этих генераторах механическая энергия превращается в электрическую. Их действие основано на явлении электромагнитной индукции. Такие генераторы имеют сравнительно простое устройство и позволяют получать большие токи при достаточно высоком напряжении.

Генератор переменного тока это машина, преобразующая механическую энергию вращения в электрическую энергию переменного тока. Различают синхронные и асинхронные генераторы переменного тока. Асинхронные генераторы, имевшие ограниченное применение, главным образом в автономных системах электропитания, к 70-м годам 20 века практически полностью заменены синхронными генераторами. Наибольшее применение имеют трехфазные генераторы переменного тока; однофазные генераторы не получили распространения, так как их характеристики и эксплуатационные качества значительно хуже, чем у трехфазных. Мощные генераторы переменного тока устанавливают на электростанциях (турбогенератор, гидрогенератор); генераторы переменного тока относительно небольшой мощности работают в системах автономного энергоснабжения (дизельная электростанция, газотурбинная электростанция) и в преобразователях частоты (двигатель-генераторный агрегат).

Источник

Генератор переменного тока

Устройство и принцип действия генератора переменного тока. Основные составные части синхронной машины. Области применения применение синхронных генераторов. Принцип действия генератора трехфазного тока и их соединение с приемниками электрической энергии.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Ижевский Политехнический колледж

ТЕМА: Генератор переменного тока

1. УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ ГЕНЕРАТОРА ПЕРЕМЕННОГО ТОКА

4. ПРИНЦИП ДЕЙСТВИЯ ГЕНЕРАТОРА ТРЕХФАЗНОГО ТОКА

Электрический ток вырабатывается в генераторах — устройствах, преоб- разующих энергию того или иного вида в электрическую энергию. К генераторам относятся гальванические элементы, электростатические машины, термобатареи, солнечные батареи и т. п. Область применения каждого из перечисленных видов генераторов электроэнергии определяется их характеристиками. Так, электростатические машины создают высокую разность потенциалов, но неспособны создать в цепи сколько-нибудь значительную силу тока. Гальванические элементы могут дать большой ток, но продолжительность их действия невелика. Преобладающую роль в наше время играют электромеханические индукционные генераторы переменного тока. В этих генераторах механическая энергия превращается в электрическую. Их действие основано на явлении электромагнитной индукции. Такие генераторы имеют сравнительно простое устройство и позволяют получать большие токи при достаточно высоком напряжении. Генератор переменного тока — это машина, преобразующая механическую энергию вращения в электрическую энергию переменного тока. Различают синхронные и асинхронные генераторы переменного тока. Асинхронные ге- нераторы, имевшие ограниченное применение, главным образом в автономных системах электропитания, к 70-м годам 20 века практически полностью заменены синхронными генераторами. Наибольшее применение имеют трехфазные генераторы переменного тока; однофазные генераторы не получили распространения, так как их характеристики и эксплуатационные качества значительно хуже, чем у трехфазных. Мощные генераторы переменного тока устанавливают на электростанциях (турбогенератор, гидрогенератор); генераторы переменного тока относительно небольшой мощности работают в системах автономного энергоснабжения (дизельная электростанция, газотурбинная электростанция) и в преобразователях частоты (двигатель-генераторный агрегат).

Читайте также:  Магнитные тиски своими руками из трансформатора

1. УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ ГЕНЕРАТОРА ПЕРЕМЕННОГО ТОКА

В настоящее время имеется много типов индукционных генераторов. Но все они состоят из одних и тех же основных частей. Это, во-первых, электро- магнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, в которой индуцируется переменная э. д. с.. Так как э. д. с., наводимые в последовательно соединенных витках, складываются, то амплитуда э. д. с. индукции в обмотке пропорциональна числу витков в ней. Она пропорциональна также амплитуде переменного магнитного потока через каждый виток: Ф=B?S Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, сделанных из электротехнической стали. Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется э. д. с., — в пазах другого. Один из сердечников (обычно внутренний) вместе со своей об- моткой вращается вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором. Неподвижный сердечник с его обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшим. Этим обеспечивается наибольшее значение потока магнитной индукции. В больших промышленных генераторах вращается электромагнит, который яв- ляется ротором, в то время как обмотки, в которых наводится э. д. с., уложены в пазах статора и остаются неподвижными. Дело в том, что подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходиться при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки. Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь.

Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным на том же валу. В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны. Появление э. д. с. в неподвижных об- мотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора. Возбудитель электрических машин — это генератор постоянного или переменного тока для питания индуктора электрической машины, создающего в ней рабочий магнитный поток. В основном получили развитие возбудитель электрических машин в синхронных машинах, поскольку постоянный ток, не- обходимый для питания индуктора, самой машиной не вырабатывается. В качестве возбудителя обычно применяется коллекторный генератор постоянного тока с шунтовым или независимым возбуждением от подвозбудителя. В связи с ростом мощностей и повышением быстродействия системы управления син- хронных машин, а также в специальных машинах начиная с 50-х годов 20 века применяются возбудители электрических машин, в которых переменное напряжение от основной машины (непосредственно или через трансформатор — самовозбуждение) или от вспомогательной синхронной машины (независимое возбуждение) подаётся на ионный или полупроводниковый выпрямитель, пи- тающий индуктор основной машины. Регулирование осуществляется в силовой цепи возбуждения или воздействием на цепь возбуждения возбудителя. В другом типе возбудителя электрических машин переменное напряжение от вспомогательного генератора, якорь которого расположен на общем валу с индикатором синхронной машины, подаётся на выпрямитель, смонтированный на том же валу. Выпрямленное напряжение поступает непосредственно в обмотку индуктора. Основные достоинства таких возбудителей — отсутствие скользящих контактов, повышенная надёжность и высокое быстродействие.

Читайте также:  Трансформатор для di box

Современный генератор электрического тока — это внушительное соору- жение из медных проводов, изоляционных материалов и стальных конструк- ций. При размерах в несколько метров важнейшие детали генераторов изготовляются с точностью до миллиметра. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично.

Синхронная машина переменного тока — это машина (обычно трёхфазная), частота вращения которой n жестко связана с частотой сети f соотношением p f n = где р — число пар полюсов машины. В зависимости от режима работы синхронной машины различают синхронные генераторы (генераторы активной мощности), синхронные электродвигатели (двигатели с постоянной частотой вращения), а также компенсаторы синхронные (генераторы реактивной мощности). Любая синхронная машина может работать во всех трёх режимах, но практически в конструкциях современных синхронных генераторов, двигателей и компенсаторов имеются определённые различия, обусловленные особенностями каждого из режимов. Основные составные части синхронной машины — статор, несущий рабочую обмотку переменного тока, и явно- или неявнополюсный ротор, на котором размещается обмотка возбуждения, всегда питаемая постоянным током (через контактные кольца). Иногда в синхронной машине небольшой мощности (до 20 квт) обмотку переменного тока размещают на роторе, а обмотку возбуждения — на статоре. Конструкцию таких машин называют обращенной. На статоре 2 (рис. 2.1) синхронной машины расположена трехфазная об- мотка 1, на роторе 4 — электромагниты (полюса), питаемые постоянным током через контактные кольца 3 и щетки. Обмотка 5 электромагнитов, создающая магнитный поток возбуждения машины, называется обмоткой возбуждения. Статор имеет три (в двухполюсной машине), шесть (в четырехполюсной) или большее количество катушек, сдвинутых одна относительно другой на со- ответствующие углы.

генератор переменный ток синхронный

Синхронный генератор — синхронная машина, работающая в генератор- ном режиме. Синхронные генераторы используют обычно в качестве источников переменного тока постоянной частоты и устанавливают на электростанциях, в электрических установках, на транспорте и т. д. Применение синхронных генераторов началось в 70-х годах 19 века в связи с изобретением свечи П. Н. Яблочкова. Наибольшее распространение имеют синхронные генераторы. для получения тока промышленной частоты, роторы которых приводятся во вращение паровыми (турбогенератор) или водяными (гидрогенератор) турбинами. Синхронные генераторы строят также с приводом от газовых турбин, двигателей внутреннего сгорания, ветро или электродвигателей. Обмотки ротора синхронного генератора питаются постоянным током от отдельного генератора — возбудителя, размещаемого обычно на общем валу с синхронным генератором и приводимого совместно с ним во вращение, или от выпрямительного устройства. При вращении ротора его магнитное поле наводит в трёхфазной обмотке статора переменную э. д. с., частота которой f = p? n , где р и n — соответственно число пар полюсов и частота вращения ротора. Быстроходные синхронные генераторы (турбогенераторы) имеют малое число пар полюсов (р = 1, 2), а в тихоходных (гидрогенераторах) р достигает нескольких десятков. Величина э. д. с. регулируется изменением тока в обмотке ротора. В синхронных генераторах малой мощности иногда применяют конст- рукции, в которых обмотка переменного тока расположена на роторе, а обмотка возбуждения — на статоре. Особый класс составляют синхронные генераторы с увеличенным числом пар полюсов — для получения тока повышенной частоты (генераторы повышенной частоты).

Читайте также:  Номинальный ток нагрузки трансформатора 1000 ква

4. ПРИНЦИП ДЕЙСТВИЯ ГЕНЕРАТОРА ТРЕХФАЗНОГО ТОКА

Трехфазная система переменного тока получила широкое распространение во всем мире, так как она обеспечивает наиболее выгодную передачу энергии и позволяет использовать надежные в работе и простые по устройству асинхронные электродвигатели. В настоящее время на всех электрических станциях России электрическая энергия вырабатывается генераторами трехфазного переменного тока. Простейший генератор трехфазного тока (рис. 1) отличается от генератора одно- фазного тока тем, что на статоре его расположены три отдельные обмотки (фазные обмотки), оси которых сдвинуты одна относительно другой на угол 120°. Каждую из обмоток трехфазного генератора вместе с присоединенной к ней внешней цепью принято называть фазой. Согласно ГОСТу фазы обозначаются буквами А, В и С.

Ротор генератора представляет собой постоянный магнит или электро- магнит, который вращается каким-либо двигателем. При вращении ротора в трех фазных обмотках статора индуктируются синусоидальные э. д. с. еА , еВ и еС одной и той же частоты и имеющие одинаковые амплитуды. Но так как магнитное поле вращающегося ротора пересекает эти обмотки не одновременно, то э. д. с. еА , еВ и еС будут сдвинуты по фазе по отношению друг к другу на 1 /3 пе- риода (рис. 2, а), чему соответствует угол 120°. Следовательно, мгновенные значения э. д. с., индуктируемые в трех обмотках генератора: tsinEe mA щ= ( )o mB tsinEe ?щ= 120 ( )o tsinEe ?щ= 240 mC Такая система трехфазных э. д. с. называется симметричной. Особенно- стью ее является то, что сумма э. д. с. всех трех фаз в любой момент времени равна нулю: [ ( 120 ) ( )] =?щ+?щ+щ=++ 0240 o o tsintsinEeee tsin mCBB Векторное изображение системы трехфазных э. д. с. показано на рис. 2, б. Любая из фазных обмоток генератора трехфазного тока является само- стоятельным источником электрической энергии и к ней может быть подключен свой приемник. Таким образом, получается несвязанная трехфазная система, имеющая для передачи электрической энергии шесть проводов. На практике такие системы не применяют. Обычно фазные обмотки трехфазного генератора и приемники электрической энергии соединяют по схеме «звезда» или «треугольник».

Рис. 4.1. Асинхронный генератор

Асинхронный генератор — асинхронная электрическая машина, работающая в генераторном режиме. Ротор в асинхронном генераторе вращается приводным двигателем в том же направлении, что и магнитное поле, но с большей скоростью. При этом скольжение ротора становится отрицательным, на валу машины возникает тормозящий момент и она работает генератором, отдавая энергию в сеть. А. г. потребляет намагничивающий ток значительной силы и требует наличия в сети генераторов реактивной мощности в виде синхронных машин. Несмотря на простоту обслуживания, асинхронные генераторы применяют сравнительно редко, в основном как вспомогательные источники небольшой мощности и как тормозные устройства.

1. Вольдек А. И., Электрические машины, 2 изд., Л., 1974.

2. Зорохович А. В., Калинин В. К. Электротехника с основами промышленной электроники, М., 1975.

3. Костенко М. П.. Пиотровский Л. М., Электрические машины, 3 изд., ч. 2, Л., 1973.

4. Петров Г. Н., Электрические машины, ч. 2, М.-Л., 1963.

Источник

Оцените статью
Adblock
detector