График зависимости напряжения нагрузки от тока нагрузки

Построение графика зависимости силы тока от напряжения

В физике график зависимости силы тока от напряжения называют вольт-амперной характеристикой (ВАХ). Он показывает, как зависят параметры электрической цепи или радиоэлемента друг от друга при их изменении в широком диапазоне. Его построение можно выполнить на основе практических исследований или теоретических расчётов. При этом второй способ не точный, а первый не всегда возможно применить.

Общие сведения

В XVI веке исследования учёных показали, что в природе существует нечто, способное вызывать силы взаимодействия между телами. Впоследствии это явление назвали электричеством, а величину, характеризующую процесс — зарядом. В 1729 году Шарль Дюфе открыл существование двух их типов. Однотипные обладают свойством отталкивания друг от друга, а одинаковые — притягивания. Условно их разделили на положительные и отрицательные.

По сути, электрический заряд определяет способность вещества генерировать поле и принимать участие в электромагнитном взаимодействии. В качестве единицы измерения скалярной величины в СИ принят кулон [Кл]. Носителями зарядов являются элементарные частицы. Обозначают их с помощью символа q.

Физическое тело состоит из атомов или молекул. В свою очередь, они формируются из простейших частиц. В твёрдом теле имеются ядра, состоящие из протонов и нейтронов. Вокруг них по орбиталям вращаются электроны. Если на тело не действуют внешние силы, система находится в электрическом равновесии. Связанно это с тем, что положительный заряд ядра компенсируется отрицательным электрона.

Но в то же время в теле могут существовать так называемые свободные электроны. Это частицы, не имеющие связи с ядром и свободно перемещающиеся по телу. Их движение хаотичное. Двигаясь по кристаллической решётке, электроны ударяются с дефектами и примесями, отдавая часть им своей энергии и превращая её в тепло. Но это явление настолько незначительное, что его сложно обнаружить даже специализированными устройствами.

Если же к телу приложено электромагнитное поле, движение свободных зарядов становится направленным. При обеспечении его непрерывности возникает явление, которое назвали электрическим током. Таким образом, под ним стали понимать упорядоченное движение носителей заряда. Исследования показали, что такими частицами могут быть:

  • электроны — твёрдые тела;
  • ионы — газы, электролиты.

Для описания электротока используют 2 величины — работу и силу. Первая показывает, какое количество энергии необходимо затратить, чтобы перенести заряд из одной точки поля в другую. Называют её напряжением. Сила тока же определяется отношением количества заряда, прошедшего через поперечное сечение тела за единицу времени.

Связь между параметрами

Чтобы появился электрический ток, необходимо выполнение нескольких условий. Нужен его источник, материал, имеющий свободные носители заряда, и замкнутая цепь, по которой они смогут перемещаться. После изобретения «вольтова столба» учёные начали проводить различные эксперименты, изучая протекание электротока. В 1825 году Ом в своих опытах с использованием гальванического источника и крутильных весов наблюдал потерю энергии в зарядах. Он обнаружил, что сила тока в цепи зависит не только от типа материала, но и его линейных характеристик.

Анализируя полученные данные, Ом вывел формулу: X = a*k/L, где: X — сила электротока, a — электрическое напряжение, k — коэффициент проводимости, l — длина материала. Впоследствии этот закон был подтверждён другими учёными и был назван в честь открывателя.

В современном виде он записывается так: I = U/R, где:

  • U — разность потенциалов (напряжение);
  • R — сопротивление.

То есть сила тока в проводнике прямо пропорциональна напряжению и обратно пропорциональна его сопротивлению. R — коэффициент пропорциональности. По своему определению он является величиной, обратной проводимости. Зависит сопротивление от физических размеров проводника и его способности препятствовать прохождению электротока.

Вычислить значение R можно по формуле: R = pL/S, где p — удельный коэффициент, зависящий от свойства материала, L — длина проводника, S — площадь поперечного сечения. Значение удельного сопротивления зависит от температуры, но при этом для каждого градуса остаётся постоянным. Его величина измерена для практически всех существующих элементов в природе и является табличной.

Открытые формулы позволили установить не только зависимость тока от сопротивления, но и связать 2 фундаментальные электрические величины — силу и работу. Причём зависимость между ними принято изображать с помощью графика, получившего название вольт-амперная характеристика. Её смысл заключается в построении функции, описывающуюся законом Ома. Это важный график для электротехнических устройств. Используя его, можно определить мощность для любых величин.

Вольт-амперная характеристика

С её помощью можно узнать, как изменяется ток при увеличении или уменьшении напряжения в цепи. Если её строить для проводника, зависимость будет линейной. Это можно понять из закона Ома, в соответствии с которым сила пропорциональна приложенной разности потенциалов. Такого вида график характерен для металлов. Но в то же время для полупроводников он не будет линейным.

Всё дело в том, что такие материалы обладают особыми свойствами. В них может наступать пробой — явление, при котором происходит резкое возрастание силы тока и процесс насыщения. В последнем случае значение электротока практически не изменяется при росте напряжения.

График зависимости строят в декартовой системе координат. По оси X откладывают напряжение, а Y — ток. Исследовать характеристику для любого элемента цепи можно и самостоятельно. Для этого потребуется подготовить:

  • регулируемый блок питания;
  • амперметр;
  • вольтметр;
  • исследуемый элемент.

Схема собирается довольно просто. К блоку питания подключают измеритель тока (амперметр), к выходу которого подсоединяют одним выводом проводник. Второй полюс соединяют со свободным контактом источника напряжения. Измеритель напряжения включают параллельно исследуемому элементу.

Эксперимент заключается в следующем. С помощью блока питания изменяют напряжение, величина которого снимается с вольтметра. Одновременно списывают данные с амперметра. Затем рисуют координатные оси ВАХ, на которых откладывают точки соответствующих величин и соединяют их плавной линией. Нарисованная кривая или прямая и будет отображать реальную картину зависимости тока от напряжения для элемента. По ВАХ можно построить график зависимости мощности от силы тока. Для этого необходимо выполнить расчёт по формуле: P = I*U.

Читайте также:  Способы снятия внутренних напряжений металла

На практике часто приходится иметь дело с переменным током. Это явление, при котором его сила изменяется с течением времени. В этом случае не используют ВАХ, так как изменение U происходит по определённому закону, чаще всего синусоидальному, поэтому, если нужно построить график зависимости напряжения от времени, необходимо знать формулу, с помощью которой описывается функция.

Решение задач

Задачи, связанные с нахождением фундаментальных электрических величин, обычно простые. Но для их решения понадобится не только знать несколько формул, но и единицы измерения в СИ. В Международной системе сила тока измеряется в амперах, напряжение — вольтах, сопротивление — омах, мощность — ваттах. Нередко приходится сталкиваться с большими числами или, наоборот, маленькими, поэтому для упрощения записи используют приставки: микро, нано, кило, мега.

Вот некоторые из типовых заданий, рассчитанных на самостоятельную проработку в рамках уроков по физике для 8 класса:

  1. Определить напряжение на резисторе, обладающем сопротивлением 10 Ом, если через него проходит ток силой в 1 ампер. Это простой пример, решаемый с помощью закона Ома. Согласно ему I = U/R, следовательно: U= I*R. Подставив исходные данные, можно выполнить вычисления: U= 1 A*10 Ом = 10 В.
  2. Найти мощность устройства, если его сопротивление равняется 1 кОм, при создаваемой разности потенциалов 10 вольт. Чтобы вычислить P, нужно определить потребление тока: I =U/R = 10/1000 = 0,01 A. Теперь воспользовавшись формулой мощности, можно найти нужный параметр: P = I*U = 0,01*10 = 0,1 Вт.
  3. Электрическая лампа включена в сеть с напряжением 220 В. Найти значение тока, проходящего через спираль, если сопротивление проводника равняется 30 Ом. По закону: I = U/R = 220/3 = 7,3 А.
  4. При напряжении 220 вольт значение тока, проходящего через дроссель, составляет 5 А. Вычислить, как изменится I, если напряжение увеличится на 20 вольт. Исходя из того, что сопротивление постоянное, можно составить пропорцию: U1 / I1 = U2/I2. Напряжение для второго случая возможно определить из выражения: U 2 = U + U 1 = 220 + 20 = 240 В. Отсюда I2 = I1 * U2 / U 1 = 5 А * 240 В / 220 В = 5,45 A.

Формула зависимости тока от напряжения, полученная экспериментальным путём, стала основополагающей в развитии электротехники и электроники. Связь между величинами оказалась пропорциональной с учётом коэффициента, получившего название сопротивление. Причём его значение зависит от рода материала и размеров тела.

Источник

—> Сайт Георгия Таненгольца —> Главная | —> Мой профиль | —> Регистрация | —> Выход | —> Вход | RSS

—> —>Статистика —>

Баланс напряжений и Вольтамперная характеристика

Сначала прочитайте Что такое электричество и зачем оно нужно и Ток, напряжение, сопротивление. Закон Ома

10. Баланс напряжений.

Если мы получили некоторое количество электрической энергии за счет ЭДС. источника, то при протекании тока израсходуем всю эту энергию во всей цепи.

В простейшей цепи имеется два сопротивления — сопротивление приемника (нагрузки) и сопротивление самого источника. R нагрузки и r источника

ЭДС. источника создает ток в цепи, при этом на нагрузке, и на самом источнике, возникает напряжение. (правильно сказать — падение напряжения)

То есть, напряжение возникает на всех сопротивлениях, где протекает ток, поэтому напряжение возникает как на внешней нагрузке, так и на внутреннем сопротивлении источника.

Е – это ЭДС

E = U + U вн ЭДС равна сумме падений напряжения во внешней цепи на внутреннем сопротивлении источника.

Сумма падений напряжений на нагрузке и внутри источника равна ЭДС. Эту фразу надо выучить.

Из уравнения очевидно, что

Напряжение всегда равно ЭДС минус падение напряжения внутри самого источника.

Напряжение всегда меньше ЭДС. на величину падения напряжения внутри самого источника.

Таким образом, напряжение — это часть Электродвижущей силы, которая действует на внешнюю цепь.

Электрическая энергия, которую создает источник, расходуется в нагрузке и , к сожалению, в самом источнике.

Последнее обстоятельство очень важно понимать.

Ток, созданный источником, проходит по замкнутой цепи, то есть, через нагрузку и через сам источник.

Источник, обладает сопротивлением, оно — то и нагревается, значит, источник, часть созданной электрической энергии тратит на нагрев самого себя.

Следовательно, электрическая энергия, которую можно получить в источнике, не может быть вся израсходована полезно в нагрузке, часть энергии теряется бесполезно в самом источнике. Бесполезно потому, что нагрев самого источника абсолютно не нужен и, в большинстве случаев, вреден.

11. Виды простых электрических цепей.

Простые электрические цепи с несколькими сопротивлениями.

  • Цепь с последовательными сопротивлениями.
  • Цепь с параллельными сопротивлениями.
  • Цепь со смешанным соединением сопротивлений.

Последовательное соединение сопротивлений

При последовательном соединении сопротивлений, между сопротивлениями нет узлов, и ток никуда не ответвляется, поэтому ток через последовательно соединенные сопротивления протекает один и тот же.

Полное (эквивалентное) сопротивление цепи равно сумме сопротивлений.

Сумма напряжений на сопротивлениях равна общему напряжению.Напряжение на каждом сопротивлении пропорционально сопротивлению.

Читайте также:  Повышенное напряжение в сети куда жаловаться

Чем больше сопротивление, тем больше на нем напряжение

При последовательном сопротивлении нельзя отключать одно сопротивление, происходит разрыв цепи и все отключится.

Параллельное соединение сопротивлений

Узел — это точка, в которой сходится не менее трех проводов.
При параллельном соединении, сопротивления подключаются под общее напряжение, так, что в каждое сопротивление ответвляется свой ток. Точки подключения сопротивления являются узлами.

Сумма токов втекающих в узел равна сумме токов вытекающих из узла.

Алгебраическая сумма токов узла равна 0.

Смысл этого закона очень легко понять, если представить себе провода как трубы, а ток как воду.

Значит, ток разветвляется по этим сопротивлениям и в каждом сопротивлении протекает свой ток.

Сумма токов во всех сопротивлениях равна общему току.

Полное (эквивалентное) сопротивление всей цепи рассчитывается по формуле.

Обратная величина полного сопротивления всей цепи равна сумме обратных величин всех сопротивлений.


g — проводимость

Полная эквивалентная проводимость равна сумме

проводимостей всех ветвей.

Полное сопротивление всей цепи меньше наименьшего из всех параллельно соединенных сопротивлений.

Чем больше сопротивлений соединяется параллельно, тем меньше полное сопротивление цепи, и больше ток, который отдает источник. Это вполне логично, ведь чем больше подключается сопротивлений параллельно, тем больше путей для тока и ему легче идти.

Все сопротивления находятся под одним напряжением .

При параллельном соединении каждое сопротивление можно отключать и подключать, независимо от других.

В реальной практике, в силовых и осветительных сетях, к одному источнику подключается несколько нагрузок, при этом всегда нагрузки подключаются параллельно.

Это удобно, потому что они работают независимо друг от друга и рассчитаны на одно и то же напряжение, и значит, их легко стандартизовать.

Вспомните, сколько лампочек в вашей квартире, и все они подключены к одной паре проводов входящих в квартиру. Все лампочки рассчитаны на напряжение 220 В, и их можно включать и выключать независимо друг от друга.

Например, в автомобиле все потребители: лампочки, моторы и т.п. включены параллельно под напряжение 12 В.

Смешанное соединение это параллельное соединение, только некоторые ветви содержат по несколько последовательно соединенных сопротивлений.

12. Электрическая мощность.

До сих пор с энергией было связано понятие напряжение и ЭДС.

Но все время оговаривалось, что напряжение — это удельная энергия, то есть энергия, которую затрачивает электрическое поле на перенос единичного электрического заряда.

Ток — это количество электрических зарядов протекающих через сечение проводника в единицу времени. Раз в единицу времени, значит, ток это скорость потока всех электрических зарядов участвующих в данном токе.

Теперь если мы возьмем и умножим скорость потока всех электрических зарядов на энергию единичного заряда (напряжение), то получим скорость совершения работы по перемещению всех электрических зарядов.

Скорость совершения работы — это мощность.

Электрическая мощность — это скорость, с которой электрическая энергия превращается в тепло на данном сопротивлении.

Электрическая мощность сопротивления равна произведению тока на напряжение.

Очень важно, что мощность пропорциональна квадрату тока.

Это значит, что если сопротивление меньше, то мощность все равно будет больше, это станет очевидно при решении задач.

P = E I Мощность, которую создает источник, равна произведению ЭДС источника на ток в цепи.

Мощность, которую создает источник и полезная мощность, которая получается на нагрузке, сильно отличаются. Вся мощность выделенная источником не может выделиться на нагрузке. КПД не может быть 100%. Часть мощности источника греет сам источник и, значит, что это мощность потерянная.

P = ( U – Ir вн ) I = U I – I 2 r вн

I 2 r вн – потери мощности в источнике

Мощность измеряется в Ваттах Вт

Мощность — наиболее важная результирующая характеристика приемника электрической энергии.

Например, лампочка мощность 100 Вт. дает больше света, чем лампочка мощность 75 Вт.

Электрическая энергия определяется как мощность, умноженная на время.

Электрическая энергия стоит денег, и мы за нее платим.

Лампочка мощность 100 Вт за 1 час превращает в тепло и свет электроэнергию 100 Вт*час. на сумму 12,8 коп.

Лампочка мощностью 75 Вт. за час превращает в тепло и свет электроэнергию 75 вт*час на сумму 9,6 коп.

13. Закон Ома для всей цепи.

Зависимости всех параметров цепи устанавливает закон Ома для всей цепи.

Формула этого закона выводится из баланса напряжений.

( R нагрузки + r внутренее ) –это полное сопротивление цепи

Формула закона Ома для всей цепи

Ток в цепи прямо пропорционален ЭДС источника и обратно пропорционален полному сопротивлению цепи.

Смысл закона Ома для всей цепи понятен, если понятен баланс напряжений в цепи.

ЭДС — постоянное свойство источника. Она есть или ее нет. Например, если батарейка заряжена, то ее ЭДС равна 1,5 Вольта (это природа веществ, из которых состоит батарейка). ЭДС. автомобильного аккумулятора 12, 6 Вольта. Напряжение, которое получится на нагрузке, при подключении к этим источникам, может оказаться самым разным, но не больше ЭДС

14. Вольтамперная характеристика электрической цепи.

Сколько лампочек можно подключить к одной батарейке?

График зависимости напряжения от величины тока, который отдает источник. называется вольтамперная характеристика источника.

1. Почему может изменяться ток, который отдает источник?

2. Почему нагрузка может потреблять разный ток?

В сущности, это один и тот же вопрос.

Нагрузка — это приемники электрической энергии.

Если нагрузка — это обычная лампочка, то она, конечно, может потреблять ток только одной величины, потому что у нее (в нагретом состоянии) постоянное сопротивление, и тогда сама проблема теряет интерес. Но если мы подключим к источнику несколько лампочек, то каждая лампочка начнет потреблять свой ток. Две лампочку начнут потреблять больше ток, чем одна, три еще больше и т. д.

Читайте также:  Какое напряжение может почувствовать человек

Итак, чем больше параллельно подключается лампочек к источнику, тем меньше суммарное сопротивление нагрузки, тем больший ток вынужден отдавать источник.

Как будут вести себя приемники электрической энергии и источник электрической энергии, если мы будем увеличивать количество параллельно подключаемых приемников?

То есть, как будет меняться напряжение, если увеличивается ток, который отдает источник?

При увеличении тока, напряжение снижается, почему?

График зависимости напряжения от величины тока, который отдает источник. называется вольтамперная характеристика источника.

Увеличиваем нагрузку, поочередно добавляем лампочки. Общий ток растет

По мере увеличения тока нагрузки напряжение на нагрузке падает .

Если не включать ни одной лампочки, то напряжение остается равным ЭДС

Такое состояние называется «Холостой ход»

Включаем одну лампочку, появляется ток 1. Напряжение снижается (вертикальный зеленый отрезок) и появляется падение напряжения внутри источника (Вертикальный оранжевый отрезок)

Включаем вторую лампочку, Токи лампочек складываются и общий ток увеличивается. От этого внутри источника увеличивается падение напряжения Ir .

Оранжевая линия длиннее, зеленая короче. Видно, что напряжение на двух лампочках стало ниже, чем было на одной горящей лампочке. Обе лампочки горят, но не так ярко, как горела одна.

Если включать следующие лапочки, то ток будет нарастать, падение напряжения внутри источника становится больше и напряжение на лампочках становится ниже, они горят тусклее. Сам источник начинает греться, так как большой ток на его внутреннем сопротивлении выделяет много тепла.

Последняя лампочка, которую ради интереса можно включить, приводит к тому, что напряжение на лампочках становится равным нулю. То есть вся ЭДС источника тратится на поддержание напряжение внутри источника. То есть падение напряжения внутри источника становится равным ЭДС Если еще включать лампочки, ничего не изменится, ток достиг максимальной величины, а напряжение остается равным нулю. Источник бесполезно греется. Такое состояние называют –«Короткое замыкание».

Как сделать так, чтобы все 5 лампочек, хоть как-то горели? Для этого надо взять другой – более мощный источник. У него должно быть меньше внутреннее сопротивление r вн. Тогда при включении лампочек, падение напряжения внутри источника Ir вн. станет меньше, а значит, напряжение на нагрузке станет больше.

График вольтамперной характеристики более мощного источника показан синей линией. Чтобы сделать такой источник, надо увеличить его размеры или, например, взять вместо тонкой батарейки, более толстую.

Когда ток достигает максимального значения, и напряжение падает до нуля, то это режим короткого замыкания

Такой характер зависимости справедлив для любых источников электрической энергии.

15. Режимы работы источника электрической энергии.

Рассматривают три режима работы электрической цепи

Холостой ход, короткое замыкание и номинальный режим.

Любая цепь может оказаться в любом из указанных режимов.

Это зависит от того какую нагрузку подключают к данному источнику, иначе говоря, это зависит от того какое соотношение получится между сопротивлением (нагрузки) внешней цепи и внутренним сопротивлением источника.

Холостой ход. — Все нагрузки отключены. Сопротивление нагрузки бесконечно больше внутреннего сопротивления источника.

В этом случае напряжение на выводах источника рано ЭДС источника.

О напряжении на нагрузке нет речи — нагрузка отключена.

Ток в цепи равен 0. Цепь разомкнута.

Источник работает, но для него это холостой ход

На холостом ходу ток равен 0.

Мощность, которую отдает источник, равна 0.

На поддержание рабочего режима холостого хода, к сожалению, надо тратить некоторую небольшую внешнюю энергию, то есть на электростанции, например, надо сжигать небольшое количество угля, чтобы генератор крутился.

Номинальный режим.

Рассмотрим режим работы цепи, когда подключили малую нагрузку (одна лампочка).

— сопротивление нагрузки сравнимо с внутренним сопротивлением источника

— напряжение на нагрузке меньше величины ЭДС.на величину падения напряжения внутри источника

— напряжение еще довольно близко по величине к величине ЭДС

— мощность, которую создает источник, практически вся используется в нагрузке

Этот режим можно назвать номинальным рабочим режимом с высоким К.П.Д.

Это режим, которому обычно соответствуют паспортные (данные) параметры источника: рабочее напряжение на нагрузке, ток, мощность.

В силовых и осветительных сетях короткое замыкание — это аварийный режим, и его допускать нельзя.

  • включена очень большая нагрузка (например много лампочек одновременно), сопротивление нагрузки упало до нуля. То есть, сопротивление нагрузки бесконечно меньше сопротивления источника.

— напряжение на нагрузке упало до 0

— все напряжение создается только внутри источника

— мощность, которая выделяется на нагрузке, равна 0

— источник создает огромную электрическую мощность, но она вся тратится внутри самого источника на его нагрев, и источник может сгореть.

Холостой ход бесполезен, так как, при холостом ходе не работают никакие полезные нагрузки. В силовых и осветительных цепях холостой ход следует рассматривать как режим ожидания. В электронных схемах холостой ход применяют часто для поддержания максимального уровня напряжения сигнала.

Короткое замыкание бесполезно, так как нагрузки, хотя и подключены, они тоже не работают, потому что напряжение на них равно 0 и никакой полезной мощности выделить нельзя. Лапочки просто не горят. В электронных схемах режим короткого замыкания применяется для маломощных источников для поддержания стабильного тока сигнала.

Короткое замыкание — это такой режим, когда источник просто не может обеспечить работу нагрузки, говорят, что источник не тянет, не хватает мощности источника.

То есть, цепь должна работать в режиме когда нагрузка подключена но не слишком большая для данного источника. Такой режим называется – номинальный или рабочий . Все нагрузки работают под расчетным напряжением и источник не перегревается.

Источник

Оцените статью
Adblock
detector