Грунты главные касательные напряжения

Главные напряжения

Можно найти величину и направление главных напряжений:

Наибольшие главные напряжения σ1направлено по биссектрисе угла видимости.

σ3наименьшее главное напряжение.

σ2действует перпендикулярно плоскости тетради.

Напряжения от действия собственного веса грунта

τyz= — τyz= 0, т.к. 2 цилиндра не могут смещаться относительно друг друга, трения нет.

Остаются только нормальные напряжения

С глубиной напряжения в однородном грунте возрастают линейно (эпюра треугольная).

Боковое расширение невозможно, так как грунт находится в условиях компрессионного сжатия.

«x» — коэффициент бокового давления грунта, при невозможности его бокового расширения.

xвыражается через табличный коэф-т Пуассона «ν» (коэф-т бокового расширения грунта).

Эти выражения получены для однородного грунта, а если грунтбудетслоистый, то:

Распределение давлений по подошве сооружений,опирающихся на грунт (контактная задача) — Самостоятельно

Фазы напряженного состояния грунта

Предельное напряженное состояние грунта в данной точке соответствует такому напряженному состоянию, при котором малейшее добавочное силовое воздействие нарушает существующее равновесие и приводит грунт в неустойчивое состояние: в массиве грунта возникают поверхности скольжения, разрывы, просадки и нарушается прочность между его частицами и их агрегатами.

Такое напряженное состояние грунтов следует рассматривать как совершенно недопустимое при воздействии на них сооружений. Поэтому для инженерной практики важно уметь оценить максимальную возможную нагрузку на грунт, при которой он еще будет находиться в равновесии, то есть не будет терять прочность и устойчивость. Пусть на поверхность грунта через жесткий штамп огранич-х р-ров передается нагрузка и все время производится наблюдение за осадками штампа.

Приведем характерную кривую деформации грунта от действия на его поверхность местной возр-ей ступенями нагрузки.

Если ступени нагружения малы и грунт обладает связностью, то первые участки на кривой деформаций будут почти горизонтальны, то есть пока не превышена структурная прочн-ть грунт будет испытывать только незначительные упругие деформации и осадка штампа будет полностью вост-ся при разгрузке.

При последующих ступенях нагружения или даже при первой, когда будет превышена структурная прочность грунта возникает уплотнение грунта под нагрузкой, то есть уменьшается пористость грунта в некоторой его области, под нагружаемой поверхностью.

Первая фаза напряженного состояния называется фазой уплотнения. В строительстве такое состояние грунта будет полезным, так как грунт в фазе уплотнения приобретает более плотную структуру и будет давать меньшие осадки. При уплотнении зависимость между общими деформациями и давлением (сжимающим напряжением) с достаточной для практических целей точностью мажет быть принята линейной. Улотнение грунта под нагрузкой может продолжаться еще при нескольких степенях нагрузки. Но при достижении его некоторой величины возникает все больше скольжений сдвигов (между частицами грунта, так как в отдельных местах сопротивление сдвигу преодолевается и скольжение между частицами постепенно формируется в отдельной площадке скольжения и зоны сдвигов). Конец фазы уплотнения и начало образования зон сдвигов соответствуетначальной критической нагрузке (или 1-ой критической нагрузке).

1 ая критическая нагрузка– нагрузка, соответствующая началу возникновения в грунте зон сдвигов и окончанию фазы уплотнения, когда под краем нагрузки между касательными и нормальным напряжениями возникают соотношения, приводящие грунт (сначала у ребер подошвы фундаментов) в предельное напряженное состояние [ПНС].

В конце фазы уплотнения (начале фазы сдвигов) непосредственно под штампом начинает формироваться жесткое ядро ограниченных смещений частиц, которое в дальнейшем расклинивает и разжимает грунт в стороны, обуславливая значительные осадки штампа.

Ядро полностью сформировывается при достижении грунтом его максимальной несущей способности, после чего остается неизменным, но возникают добавочные пластические области ядра, которые меняя свое положение, выискивают более слабые места в массиве грунта, в то время как жесткое ядро, оставаясь без изменения, внедряется в массив грунта.

Читайте также:  Как определить напряжение при помощи осциллографа

При возникающем при этом предельным напряженным состоянии грунта преобладают боковые смещения частиц и формируются непрерывные поверхности скольжения, в результате чего толща грунта теряет устойчивость.

При дальнейшем увеличении нагрузки наступает вторая фаза — фаза сдвигов.

2 ая критическая нагрузка– нагрузка, при которой под нагруженной поверхностью сформировываются сплошные области предельного равновесия, грунт приходит в неустойчивое состояние и полностью исчерпывается его несущая способность.3 фаза –фаза необратимой деформации(пластическое или прогрессирующее течение, выпирание, просадка и др. недопустимых деформаций основания).

Предельное напряженное состояние в точке для сыпучих и связных грунтов

При действии на поверхности грунта в любой точке М для любой площадки mnпроведенную через эту точку под угломαвозникнут нормальные касательные напряжения.

К нормальным напряжениям следует относить и силы связности, суммарно оценивающие давление связности ре .

Тогда на mnбудут действовать нормальные напряженияσαеи касательныеτα

При изменении угла αвеличины составляющих напряжений, так же будут меняться и если касательные (сдвигающие напряжения) достигнут определенной доли от нормальных, то как показывают опыты на сдвиг произойдет скольжение одной части грунта относительно другой.

Таким образом, условием предельного равновесия грунта в данной точке будет:

Если f — величина постоянная, то в предельном состоянии она представляет собой тангенс угла наклона прямолинейной огибающей кругов предельных напряжений, кругов Мора.

Рис 1. Для сыпучих грунтов:

С другой стороны согласно рис 1

Это отношение равно тангенсу угла отклонения θ, т.е. угла, на который отклоняется полное напряжение для площадкиτот нормали к этой площадке. Т.к. через заданную точку можно провести множество площадок, то, очевидно, необходимо отыскать самую невыгодную площадку, для которой будет существовать максимальный угол отклоненияθmax, тогда tg(θmax)≤f.

условие Мора– условие предельного равновесия для сыпучих грунтов.

Ему можно придать другой вид после несложных тригонометрических преобразований, а именно:

Это выражение широко используются в теории давления грунтов на ограждение. Знак «-» соответствует активному давлению, а «+» пассивному сопротивлению сыпучих грунтов.

Условию предельного равновесия можно придать другой вид, выразив главные напряжения σ1иσ3 через составляющие напряженийσzyzy .

Источник

1.5. ПРОЧНОСТЬ ГРУНТОВ

Сопротивление грунта срезу характеризуется касательными напряжениями в предельном состоянии, когда наступает разрушение грунта [4]. Соотношение между предельными касательными τ и нормальными к площадкам сдвига σ напряжениями выражается условием прочности Кулона-Мора

где φ — угол внутреннего трения; с — удельное сцепление.

Характеристики прочности φ и с определяют в лабораторных и полевых условиях. Для предварительных, а также окончательных расчетов оснований зданий и сооружений II и III класса допускается принимать значения φ и с по табл. 1.17 и 1.18.

ТАБЛИЦА 1.17. НОРМАТИВНЫЕ ЗНАЧЕНИЯ УДЕЛЬНЫХ СЦЕПЛЕНИИ c , кПа, И УГЛОВ ВНУТРЕННЕГО ТРЕНИЯ φ , град, ПЕСЧАНЫХ ГРУНТОВ

Песок Характеристика Значения с и φ при коэффициенте пористости e
0,45 0,55 0,65 0,75
Гравелистый и крупный с
φ
2
43
1
40
0
38

Средней крупности с
φ
3
40
2
38
1
35

Мелкий с
φ
6
38
4
36
2
32
0
28
Пылеватый с
φ
8
36
6
34
4
30
2
26

Примечание. Приведенные в таблице значения относятся к кварцевым пескам (см. табл. 1.12).

ТАБЛИЦА 1.18. НОРМАТИВНЫЕ ЗНАЧЕНИЯ УДЕЛЬНЫХ СЦЕПЛЕНИЯ c , кПа, И УГЛОВ ВНУТРЕННЕГО ТРЕНИЯ φ , град, ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ ЧЕТВЕРТИЧНЫХ ОТЛОЖЕНИЙ

Читайте также:  Как стабилизировать напряжение 3 вольта
Грунт Показатель текучести Характеристика Значения с и φ при коэффициенте пористости е
0,45 0,55 0,65 0,75 0,85 0,95 1,05
Супесь 0 IL ≤ 0,25 с
φ
21
30
17
29
15
27
13
24



0,25 IL ≤ 0,75 с
φ
19
28
15
26
13
24
11
21
9
18


Суглинок 0 IL ≤ 0,25 с
φ
47
26
37
25
31
24
25
23
22
22
19
20

0,25 IL ≤ 0,5 с
φ
39
24
34
23
28
22
23
21
18
19
15
17

0,5 IL ≤ 0,75 с
φ


25
19
20
18
16
16
14
14
12
12
Глина 0 IL ≤ 0,25 с
φ

81
21
68
20
54
19
47
18
41
16
36
14
0,25 IL ≤ 0,5 с
φ


57
18
50
17
43
16
37
14
32
11
0,5 IL ≤ 0,75 с
φ


45
15
41
14
36
12
33
10
29
7

Примечание. Значения с и φ не распространяются на лёссовые грунты.

1.5.1. Определение прочностных характеристик в лабораторных условиях

В практике исследований грунтов применяют метод среза грунта по фиксированной плоскости в приборах одноплоскостного среза. Для получения φ и с необходимо провести срез не менее трех образцов грунта при различных значениях вертикальной нагрузки. По полученным в опытах значениям сопротивления срезу τ строят график линейной зависимости τ = f(σ) и находят угол внутреннего трения φ и удельное сцепление с (рис. 1.5).

Различают две основные схемы опыта: медленный срез предварительно уплотненного до полной консолидации образца грунта (консолидировано-дренированное испытание) и быстрый срез без предварительного уплотнения (неконсолидировано-недренированное испытание).

Значения φ и с , полученные по методике медленного консолидированного среза, используются для определения расчетного сопротивления грунта, а также для оценки несущей способности основания, находящегося в стабилизированном состоянии (все напряжения от внешней нагрузки восприняты скелетом грунта). Значения φ и с , полученные по методике быстрого неконсолидированного среза, используются для определения несущей способности медленно уплотняющихся водонасыщенных суглинков и глин, илов, сапропелей, заторфованных грунтов и торфов. В таких грунтах возможно возникновение нестабилизированного состояния (наличие избыточного давления в поровой воде) вследствие их медленной консолидации или быстрой передачи нагрузки от сооружения (силосы, резервуары, склады сырья и т.п.).

Метод определения характеристик прочности φ и с в условиях трехосного сжатия в большей степени соответствует напряженному состоянию грунта в основании сооружения. Испытание проводится на приборе, в котором образец грунта подвергается всестороннему гидростатическому давлению и добавочному вертикальному (осевому). Для определения прочностных характеристик грунтов проводят серию испытаний при различных соотношениях давлений, доводя образец до разрушения, в результате каждого опыта получают значения наибольшего σ1 и наименьшего σ3 главных нормальных напряжений в момент разрушения. Графически зависимость между главными касательными и нормальными напряжениями представляют с помощью кругов Мора, каждый из которых строится на разности напряжений σ1 и σ3 (рис. 1.6).

Общая касательная к этим кругам удовлетворяет условию прочности (1.5) и позволяет определить характеристики φ и с .

В приборах трехосного сжатия проводят следующие испытания:

  • – недренированное — дренирование воды из образца грунта отсутствует в течение всего опыта;
  • – консолидировано-недренированное — дренирование обеспечивается в процессе приложения гидростатического давления и образец полностью уплотняется, в процессе приложения осевых нагрузок дренирование отсутствует;
  • – дренированное — дренирование обеспечивается в течение всего испытания.
Читайте также:  Ошибка встречное напряжение авр 02

Недренированные испытания водонасыщенных грунтов проводят для определения прочностных характеристик, выражаемых через общие (тотальные) напряжения. Дренированные испытания проводят для определения прочностных характеристик, выражаемых через эффективные напряжения. При этом в процессе опыта должно быть достигнуто полностью консолидированное состояние грунта. Прочностные характеристики грунтов, выражаемые через эффективные напряжения, могут быть определены также для образцов грунта, испытанных в неполностью консолидированном состоянии, при условии измерения в процессе опыта давления в поровой воде.

Количественной характеристикой прочности скальных грунтов является предел прочности на одноосное сжатие Rc , определяемый раздавливанием образца грунта и вычисляемый по формуле

где Р — нагрузка в момент разрушения образца грунта; F — площадь поперечного сечения образца грунта.

1.5.2. Определение прочностных характеристик в полевых условиях

Полевое испытание на срез в заданной плоскости целика грунта, заключенного в кольцевую обойму, аналогично лабораторному испытанию на срез в одноплоскостных срезных приборах. Испытания проводятся в шурфах, котлованах, штреках и т.д. Для получения характеристик φ и с определяют сопротивление срезу не менее чем трех целиков при различных вертикальных нагрузках. Схемы испытаний принимаются те же, что и в лабораторных условиях. Значения φ и с находят на основе построения зависимости (1.5), как это показано на рис. 1.5.

Полевое определение характеристик φ и с в стенах буровой скважины проводится методами кольцевого и поступательного среза. Схемы испытаний приведены на рис. 1.7. Эти методы применяются для испытаний грунтов на глубинах до 10 м (кольцевой срез) и до 20 м (поступательный срез). В методе кольцевого среза используется распорный штамп с продольными лопастями, в методе поступательного среза — с поперечными лопастями. С помощью распорного штампа лопасти вдавливаются в стенки скважины и создастся нормальное давление на стенки. В методе кольцевого среза грунт срезается вследствие приложения крутящего момента, а в методе поступательного среза — выдергивающей силы. Для получения φ и с необходимо провести не менее трех срезов при различных нормальных давлениях на стенки скважины и построить зависимость τ = f (σ) (см. рис. 1.5).

Метод вращательного среза с помощью крыльчатки, вдавливаемой в массив грунта или в забой буровой скважины (см. рис. 1.7), позволяет определить сопротивление срезу τ , поэтому его рекомендуется применять при слабых пылевато-глинистых грунтах, илах, сапропелях, заторфованных грунтах и торфах, так как для них угол внутреннего трения практически равен нулю и можно принять с = τ . Испытания крыльчаткой проводят на глубинах до 20 м.

Для определения характеристик прочности в полевых условиях применяют методы выпирания и обрушения грунта в горных выработках. Значения φ и с вычисляют из условий предельного равновесия выпираемого и обрушаемого массива грунта.

Угол внутреннего трения песчаных грунтов может быть определен с помощью статического и динамического зондирования. По данным статического зондирования угол φ имеет следующие значения:

qc , МПа 1 2 4 7 12 20 30
φ , град 26 28 30 32 34 36 38

Значения φ по данным динамического зондирования приведены в табл. 1.19. Для сооружений I и II класса является обязательным сопоставление данных зондирования с результатами испытаний тех же грунтов на срез. Для сооружений III класса допускается определять φ только по результатам зондирования.

ТАБЛИЦА 1.19. ЗНАЧЕНИЯ УГЛОВ ВНУТРЕННЕГО ТРЕНИЯ φ ПЕСЧАНЫХ ГРУНТОВ ПО ДАННЫМ ДИНАМИЧЕСКОГО ЗОНДИРОВАНИЯ

Песок Значения φ , град, МПа при qd , МПа
2 3,5 7 11 14 17,5
Крупный и средней крупности 30 33 33 38 40 41
Мелкий 28 30 33 35 37 38
Пылеватый 28 28 30 32 34 35

Сорочан Е.А. Основания, фундаменты и подземные сооружения

Источник

Оцените статью
Adblock
detector