Источнику постоянного напряжения вначале подключают алюминиевую проволоку а затем

Источнику постоянного напряжения вначале подключают алюминиевую проволоку а затем

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

На уроке физики Миша узнал, что температура измеряется не только в градусах Цельсия, но и по Фаренгейту. Определите цену деления прибора, который ему нужен, чтобы точно узнать температуру воздуха за окном (40°F).

Дайте ответ в градусах по Фаренгейту.

На каком физическом явлении основано действие плавкого предохранителя? В чём состоит это явление?

Металлический образец, находящийся в твёрдом состоянии, поместили в электропечь и начали нагревать. На рисунке приведён график зависимости температуры t этого образца от времени Известно, что на нагревание образца от начальной температуры до температуры плавления было затрачено количество теплоты 0,4 МДж. Какова масса образца, если его удельная теплота плавления равна 25 кДж/кг? Потери теплоты пренебрежимо малы. Ответ запишите в килограммах.

Электрическая цепь состоит из соединённых последовательно источника постоянного напряжения, идеального амперметра и длинной однородной проволоки постоянного сечения. При этом амперметр показывает ток силой I1.

Эту же проволоку складывают в виде правильного пятиугольника и снова включают в ту же цепь так, как показано на рисунке. При таком подключении амперметр показывает ток силой I2.

Найдите отношение показаний амперметра в первом и во втором случаях.

При напряжении 120 В электрическая лампа в течение 0,5 мин потребила 900 Дж энергии. Чему равна сила тока в лампе? Ответ запишите в амперах.

Вычислите, сколько энергии выделится при полном сгорании древесного угля массой 15 кг.

Удельная теплота сгорания древесного угля Ответ дайте в МДж.

В справочнике физических свойств различных материалов представлена следующая таблица плотностей и удельных теплоёмкостей.

Брусок из стали массой 25 кг нагрели на 50°С. На сколько градусов нужно нагреть брусок серебра массой 15 кг, чтобы энергии потраченные на нагревание были равны? Ответ округлите до целых.

К источнику постоянного напряжения вначале подключают алюминиевую проволоку, а затем кювету с электролитом. При этом в каждом случае рядом с проводниками помещают магнитную стрелку. В каком случае магнитная стрелка после замыкания ключа зафиксирует факт появления магнитного поля?

1) ни в том, ни в другом случае

4) только во втором случае

В 1970−х годах были разработаны арамидные волокна, получившие название «кевлар». Этот материал в пять раз прочнее стали, но при этом значительно легче алюминия (плотность алюминия 2,7 г/см 3 , а плотность кевлара 1,5 г/см 3 ). В 2017 году совершил свой первый полёт пассажирский самолёт МС−21 «Иркут», в конструкции которого использовался кевлар, что позволило сделать машину легче и прочнее.

1) Во сколько раз масса крыла из алюминия будет больше массы аналогичного по размерам и конструкции крыла из кевлара?

2) На заводе изготовили два корпуса самолёта — один из алюминия, а второй из кевлара. Внешний объём у корпусов одинаковый. Во сколько раз объём использованного кевлара превышает объём использованного алюминия, если средняя плотность кевларового корпуса в 1,65 раз меньше средней плотности алюминиевого корпуса? Ответ округлите до десятых.

Для изготовления кипятильника использовали проволоку длиной l = 1 м и поперечным сечением S = 0,05 мм 2 с удельным сопротивлением ρ = 1,2 · 10 -6 Ом · м. Кипятильник включили в сеть с синусоидальным напряжением, неизменное эффективное (действующее) значение которого равно U = 220 В. Через какое время τ он вскипятит 1 литр воды с начальной температурой t1 = 20 ºС в отсутствие потерь теплоты? Ответ дайте в виде целого числа минут и секунд.

Толя взял стрелочный вольтметр, рассчитанный на измерение напряжения не более 4 В, и решил увеличить его предел измерений до 12 В. Для этого Толя припаял к одному из выходов вольтметра дополнительный резистор и переградуировал шкалу прибора, получив тем самым вольтметр с увеличенным внутренним сопротивлением и расширенным диапазоном измерений. То есть, когда вольтметр по старой шкале показывал значение напряжения 4 В, на новой шкале стрелка указывала на деление в 12 В.

1) Если напряжение на последовательно соединённых вольтметре и дополнительном резисторе составляет 12 В, а напряжение на вольтметре составляет 4 В, то чему равно напряжение на резисторе?

2) Если считать, что внутреннее сопротивление вольтметра составляет 1 кОм, то чему равно сопротивление дополнительного резистора, который Толя припаял к вольтметру?

3) Точность изготовления резисторов на заводе составляет ± 5%. В каком диапазоне может лежать суммарная величина напряжения на резисторе и вольтметре, если вольтметр по старой шкале показывает 1 В? Считайте показания вольтметра по старой шкале точными.

Источник

Источнику постоянного напряжения вначале подключают алюминиевую проволоку а затем

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

Читайте также:  Стабилизатор напряжения iek 8 квт инструкция по применению

Заметив, что радиоуправляемая машинка начала ездить слишком медленно, Кузя решил измерить при помощи вольтметра напряжение на аккумуляторе в машинке. На корпусе аккумулятора написано «6 В». На рисунке изображена шкала вольтметра, подключённого Кузей к этому аккумулятору. На какую величину реальное напряжение на аккумуляторе меньше значения, указанного на его корпусе? Ответ дайте в вольтах.

Между ремнем и шкивом, на который он надет, при работе время от времени проскакивают искры. Каким физическим явлением это объясняется? В чём состоит это явление?

Литровую кастрюлю, полностью заполненную водой, из комнаты вынесли на мороз. Зависимость температуры воды от времени представлена на рисунке. Какое количество теплоты выделилось при кристаллизации и охлаждении льда? Ответ запишите в килоджоулях. (Удельная теплота плавления льда — 330 кДж/кг.)

Чему равно общее сопротивление участка цепи, изображённого на рисунке, если R1 = 1 Ом, R2 = 10 Ом, R3 = 10 Ом, R4 = 5 Ом? Ответ дайте в омах.

За 0,5 мин работы в электрической лампе была израсходована энергия 900 Дж. Известно, что через лампу протекает ток силой 0,5 А. Найдите напряжение, под которым работает лампа. Ответ дайте в вольтах.

Сколько воды, взятой при температуре 14 °С, можно нагреть до 50 °С, сжигая спирт массой 30 г и считая, что вся выделяемая при горении спирта энергия идет на нагревание воды? Удельная теплота сгорания спирта — 27 МДж/кг; удельная теплоемкость воды — 4200 Дж/(кг · °C). Ответ дайте в килограммах, округлите до сотых.

В справочнике физических свойств различных материалов представлена следующая таблица

плотностей и удельных теплот парообразования.

Какое количество теплоты выделится, при испарении 3 кг ртути? Ответ дайте в мегаджоулях.

К источнику постоянного напряжения вначале подключают алюминиевую проволоку, а затем кювету с электролитом. При этом в каждом случае рядом с проводниками помещают магнитную стрелку. В каком случае магнитная стрелка после замыкания ключа зафиксирует факт появления магнитного поля?

1) ни в том, ни в другом случае

4) только во втором случае

На альтернативном чемпионате мира по тяжёлой атлетике спортсмены должны поднять одной рукой свою будущую награду — это куб из золота с ребром 20 см. Внутри куба находится платиновый куб с ребром 10 см.

1) Сколько кубических метров золота содержится в награде? Ответ дайте с точностью до тысячных.

2) Какую массу нужно поднять чемпиону, если учесть, что плотности золота и платины соответственно равны 19300 кг/м 3 и 21500 кг/м 3 ? Ответ дайте с точностью до десятых.

Ответ: 1) объём золота м 3 2) масса награды кг.

Какая мощность выделяется в участке цепи, схема которого изображена на рисунке, если R = 27 Ом, а напряжение между точками A и B равно 9 В? Ответ приведите в ваттах.

Колю попросили определить размер кубика сахара-рафинада. К сожалению, под руками у него оказалась только линейка для классной доски — с ценой деления 10 см. Выяснилось, что длина ряда из 7 кубиков, составленных вплотную, меньше 10 см, а ряда из 8 кубиков — уже больше. Ряд из 14 кубиков короче 20 см, а из 15 кубиков — длиннее. Ряд из 22 кубиков короче 30 см, а из 23 — длиннее.

1) В каком из экспериментов Коли длина стороны кубика будет определена с наименьшей погрешностью и почему?

2) Определите границы размера кубика по результатам каждого из трёх экспериментов.

3) Запишите наилучшую оценку для размера кубика сахара-рафинада с учётом погрешности.

Считайте, что все кубики одинаковые, и что деления на линейку нанесены достаточно точно. Напишите полное решение этой задачи.

Источник

Источнику постоянного напряжения вначале подключают алюминиевую проволоку а затем

На рисунке изображена картина линий магнитного поля двух постоянных магнитов, полученная с помощью железных опилок. Рядом с левым магнитом, но при этом довольно далеко от правого магнита установлена магнитная стрелка, которая находится в равновесии. Каким полюсам магнитов соответствуют области 1 и 2? Кратко объясните свой ответ.

По картине линий магнитного поля видно, что магниты притягиваются друг к другу. Это означает, что полюса 1 и 2 разные. Полюс 1 — южный, так как к нему притягивается северный полюс магнитной стрелки. Значит, полюс 2 — северный.

Ответ: полюс 1 — южный, полюс 2 — северный.

На рисунке представлена электрическая схема, которая содержит источник тока, проводник AB, ключ и реостат. Проводник AB помещён между полюсами постоянного магнита.

Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) Магнитные линии поля постоянного магнита в области расположения проводника AB направлены вертикально вверх.

2) Электрический ток, протекающий в проводнике AB, создаёт однородное магнитное поле.

3) При замкнутом ключе электрический ток в проводнике имеет направление от точки A к точке B.

4) При замкнутом ключе проводник будет выталкиваться из области магнита вправо.

5) При перемещении ползунка реостата вправо сила Ампера, действующая на проводник AB, уменьшится.

Разберём каждое из утверждений.

1) Магнитные линии поля постоянного магнита в области расположения проводника AB направлены вертикально вверх: неверно. Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вниз, так как линии поля выходят из северного полюса в южный.

2) Электрический ток, протекающий в проводнике AB, создаёт однородное магнитное поле: неверно. Прямолинейный проводник с током создает неоднородное магнитное поле.

Читайте также:  Регулятор напряжения хонда црв

3) При замкнутом ключе электрический ток в проводнике имеет направление от точки A к точке B: неверно. Ток течет от «плюса» к «минусу», следовательно, от точки В к А.

4) При замкнутом ключе проводник будет выталкиваться из области магнита вправо: верно. Если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре пальца были направлены по направлению тока, то отогнутый на 90° большой палец покажет направление силы Ампера.

5) При перемещении ползунка реостата вправо сила Ампера, действующая на проводник AB, уменьшится: верно. При перемещении ползунка вправо сопротивление резистора увеличится, следовательно, сила тока в цепи уменьшится. Сила Ампера прямо пропорциональна силе тока, следовательно, сила Ампера уменьшится.

Источник

Источнику постоянного напряжения вначале подключают алюминиевую проволоку а затем

По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки

1) образуются магнитные полюса: на конце 1 — северный полюс; на конце 2 — южный

2) образуются магнитные полюса: на конце 1 — южный полюс; на конце 2 — северный

3) скапливаются электрические заряды: на конце 1 — отрицательный заряд; на конце 2 — положительный

4) скапливаются электрические заряды: на конце 1 — положительный заряд; на конце 2 — отрицательны

Какой набор приборов и материалов можно использовать, чтобы продемонстрировать опыт Эрстеда по обнаружению магнитного поля тока?

1) два полосовых магнита, подвешенных на нитях

2) магнитная стрелка и прямолинейный проводник, подключённый к источнику постоянного тока

3) проволочная катушка, подключённая к миллиамперметру, полосовой магнит

4) полосовой магнит, лист бумаги и железные опилки

По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах сердечника катушки

1) образуются магнитные полюса: на конце 1 — северный полюс, на конце 2 — южный полюс

2) образуются магнитные полюса: на конце 1 — южный полюс, на конце 2 — северный полюс

3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный заряд

4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный заряд

На рисунке представлен график зависимости силы электрического тока, протекающего в резисторе, от времени. Магнитное поле вокруг проводника возникает в интервале(-ах) времени

3) только от 0 с до 1 с и от 4 с до 6 с

Изучая магнитные свойства электромагнита, ученик собрал электрическую схему, содержащую катушку, намотанную на железный сердечник, и установил рядом с катушкой магнитную стрелку (см. рис. 1). При пропускании через катушку электрического тока магнитная стрелка поворачивается (рис. 2 и 3).

Какие утверждения соответствуют результатам проведённых экспериментальных наблюдений? Из предложенного перечня утверждений выберите два правильных. Укажите их номера.

1) Катушка при прохождении через неё электрического тока приобретает свойства магнита.

2) Магнитные свойства катушки зависят от количества её витков.

3) При увеличении электрического тока, протекающего через катушку, магнитное действие катушки усиливается.

4) При изменении направления электрического тока, протекающего через катушку, намагниченность железного сердечника, расположенного внутри катушки, менялась на противоположную.

5) Левому торцу железного сердечника (торцу № 2) на рис. 2 соответствует южный полюс электромагнита.

Изучая магнитные свойства проводника с током, ученик собрал электрическую схему, содержащую прямой проводник, и установил рядом с проводником магнитную стрелку (см. рис. 1). При пропускании через проводник электрического тока магнитная стрелка поворачивается (рис. 2 и 3). Какие утверждения соответствуют результатам проведённых экспериментальных наблюдений? Из предложенного перечня утверждений выберите два правильных. Укажите их номера.

1) Проводник при прохождении через него электрического тока приобретает свойства магнита.

2) При изменении направления электрического тока магнитное поле, создаваемое проводником с током, изменяется на противоположное.

3) При увеличении электрического тока, протекающего через проводник, магнитное действие проводника усиливается.

4) Магнитные свойства проводника зависят от его размеров.

5) Магнитное действие проводника с током зависят от среды, в которую он помещён.

К источнику постоянного напряжения вначале подключают медную проволоку, а затем трубку с разреженным газом, в которой возникает газовый разряд. При этом в каждом случае рядом с проводниками помещают магнитную стрелку. В каком случае магнитная стрелка после замыкания ключа зафиксирует факт появления магнитного поля?

1) ни в том, ни в другом случае

3) только во втором случае

К источнику постоянного напряжения вначале подключают алюминиевую проволоку, а затем кювету с электролитом. При этом в каждом случае рядом с проводниками помещают магнитную стрелку. В каком случае магнитная стрелка после замыкания ключа зафиксирует факт появления магнитного поля?

1) ни в том, ни в другом случае

4) только во втором случае

Ток силой I протекает по прямолинейному участку провода (ток направлен «на нас»). Вектор индукции магнитного поля, создаваемого током, направлен влево в точке

Ток силой I протекает по прямолинейному участку провода (ток направлен «от нас»). Вектор индукции магнитного поля, создаваемого током, направлен вверх (в плоскости рисунка) в точке

Проводник, по которому протекает электрический ток I, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?

В магнитное поле, линии индукции которого показаны на рисунке, помещены небольшие магнитные стрелки с номерами 1, 2, 3 и 4, которые могут свободно вращаться. Южный полюс стрелки на рисунке светлый, северный — тёмный. В устойчивом положении находится стрелка с номером

В магнитное поле, линии индукции которого показаны на рисунке, помещены небольшие магнитные стрелки с номерами 1, 2, 3 и 4, которые могут свободно вращаться. Северный полюс стрелки на рисунке тёмный, южный — светлый. В устойчивом положении находится стрелка с номером

Читайте также:  Стабилизатор напряжения defender voltage regulator 600 va инструкция

Какое из магнитных взаимодействий можно использовать для магнитной подвески?

А) притяжение разноимённых полюсов

Б) отталкивание одноимённых полюсов

Средняя скорость поездов на железных дорогах не превышает 150 км/ч. Сконструировать поезд, способный состязаться по скорости с самолётом, непросто. При больших скоростях колёса поездов не выдерживают нагрузку. Выход один: отказаться от колёс, заставив поезд лететь. Один из способов «подвесить» поезд над рельсами — использовать отталкивание магнитов.

В 1910 году бельгиец Э. Башле построил первую в мире модель летающего поезда и испытал её. 50-килограммовый сигарообразный вагончик летающего поезда разгонялся до скорости свыше 500 км/ч! Магнитная дорога Башле представляла собой цепочку металлических столбиков с укреплёнными на их вершинах катушками. После включения тока вагончик со встроенными магнитами приподнимался над катушками и разгонялся тем же магнитным полем, над которым был подвешен.

Практически одновременно с Башле в 1911 году профессор Томского технологического института Б. Вейнберг разработал гораздо более экономичную подвеску летающего поезда. Вейнберг предлагал не отталкивать дорогу и вагоны друг от друга, что чревато огромными затратами энергии, а притягивать их обычными электромагнитами. Электромагниты дороги были расположены над поездом, чтобы своим притяжением компенсировать силу тяжести поезда. Железный вагон располагался первоначально не точно под электромагнитом, а позади него. При этом электромагниты монтировались по всей длине дороги. При включении тока в первом электромагните вагончик поднимался и продвигался вперёд, по направлению к магниту. Но за мгновение до того, как вагончик должен был прилипнуть к электромагниту, ток выключался. Поезд продолжал лететь по инерции, снижая высоту. Включался следующий электромагнит, поезд опять приподнимался и ускорялся. Поместив свой вагон в медную трубу, из которой был откачан воздух, Вейнберг разогнал вагон до скорости 800 км/ч!

Что следует сделать в модели магнитного поезда Б. Вейнберга, чтобы вагончик большей массы двигался в прежнем режиме? Ответ поясните.

Средняя скорость поездов на железных дорогах не превышает 150 км/ч. Сконструировать поезд, способный состязаться по скорости с самолётом, непросто. При больших скоростях колёса поездов не выдерживают нагрузку. Выход один: отказаться от колёс, заставив поезд лететь. Один из способов «подвесить» поезд над рельсами — использовать отталкивание магнитов.

В 1910 году бельгиец Э. Башле построил первую в мире модель летающего поезда и испытал её. 50-килограммовый сигарообразный вагончик летающего поезда разгонялся до скорости свыше 500 км/ч! Магнитная дорога Башле представляла собой цепочку металлических столбиков с укреплёнными на их вершинах катушками. После включения тока вагончик со встроенными магнитами приподнимался над катушками и разгонялся тем же магнитным полем, над которым был подвешен.

Практически одновременно с Башле в 1911 году профессор Томского технологического института Б. Вейнберг разработал гораздо более экономичную подвеску летающего поезда. Вейнберг предлагал не отталкивать дорогу и вагоны друг от друга, что чревато огромными затратами энергии, а притягивать их обычными электромагнитами. Электромагниты дороги были расположены над поездом, чтобы своим притяжением компенсировать силу тяжести поезда. Железный вагон располагался первоначально не точно под электромагнитом, а позади него. При этом электромагниты монтировались по всей длине дороги. При включении тока в первом электромагните вагончик поднимался и продвигался вперёд, по направлению к магниту. Но за мгновение до того, как вагончик должен был прилипнуть к электромагниту, ток выключался. Поезд продолжал лететь по инерции, снижая высоту. Включался следующий электромагнит, поезд опять приподнимался и ускорялся. Поместив свой вагон в медную трубу, из которой был откачан воздух, Вейнберг разогнал вагон до скорости 800 км/ч!

Загрузка решений доступна для зарегистрировавшихся пользователей

При движении поезда на магнитной подвеске

1) силы трения между поездом и дорогой отсутствуют

2) силы сопротивления воздуха пренебрежимо малы

3) используются силы электростатического отталкивания

4) используются силы притяжения одноименных магнитных полюсов

Средняя скорость поездов на железных дорогах не превышает 150 км/ч. Сконструировать поезд, способный состязаться по скорости с самолётом, непросто. При больших скоростях колёса поездов не выдерживают нагрузку. Выход один: отказаться от колёс, заставив поезд лететь. Один из способов «подвесить» поезд над рельсами — использовать отталкивание магнитов.

В 1910 году бельгиец Э. Башле построил первую в мире модель летающего поезда и испытал её. 50-килограммовый сигарообразный вагончик летающего поезда разгонялся до скорости свыше 500 км/ч! Магнитная дорога Башле представляла собой цепочку металлических столбиков с укреплёнными на их вершинах катушками. После включения тока вагончик со встроенными магнитами приподнимался над катушками и разгонялся тем же магнитным полем, над которым был подвешен.

Практически одновременно с Башле в 1911 году профессор Томского технологического института Б. Вейнберг разработал гораздо более экономичную подвеску летающего поезда. Вейнберг предлагал не отталкивать дорогу и вагоны друг от друга, что чревато огромными затратами энергии, а притягивать их обычными электромагнитами. Электромагниты дороги были расположены над поездом, чтобы своим притяжением компенсировать силу тяжести поезда. Железный вагон располагался первоначально не точно под электромагнитом, а позади него. При этом электромагниты монтировались по всей длине дороги. При включении тока в первом электромагните вагончик поднимался и продвигался вперёд, по направлению к магниту. Но за мгновение до того, как вагончик должен был прилипнуть к электромагниту, ток выключался. Поезд продолжал лететь по инерции, снижая высоту. Включался следующий электромагнит, поезд опять приподнимался и ускорялся. Поместив свой вагон в медную трубу, из которой был откачан воздух, Вейнберг разогнал вагон до скорости 800 км/ч!

Источник

Оцените статью
Adblock
detector