Как меняется мощность при изменении напряжения

Как зависит мощность от напряжения

Основными характеристиками электричества считаются такие параметры, как:

  • напряжение (U, измеряется в вольтах);
  • сопротивление (R, единица измерения ом);
  • мощность (P, ватт);
  • электрический ток (I, ампер).

В этой статье мы рассмотрим вопрос о том, как зависит мощность от напряжения. Точность при расчете этих показателей влияет на правильность подбора оборудования (например, резисторов, выключателей, питающих кабелей и пр.).

Напряжение представляет собой разность между величинами потенциалов входящего провода и исходящего, то есть фазы и рабочего нуля. Значения подведенного напряжения и потребляемого тока позволяют вычислить мощность. В сетях постоянного тока мощность рассчитывается как произведение напряжения и тока. Для сетей переменного тока система расчетов сложнее.

Как зависит мощность от напряжения в однофазных сетях

Рассматривая зависимость мощности от напряжения в однофазных сетях, следует учитывать влияние такого фактора, как промышленная частота, которая является причиной возникновения особых нагрузок:

  • емкостных (у конденсаторов), при этом вектор тока на 90° сдвигается вперед относительно вектора напряжения;
  • индуктивных (в обмотках катушек), когда происходит отставание вектора тока на 90°.

Такого рода нагрузки называют реактивными. Комплекс реактивных нагрузок создает дополнительные потери мощности, не выполняющие полезных действий. Эти мощности также именуются реактивными. В отличие от активных нагрузок, для реактивных характерно такое явление, как сдвиг фазы (между напряжением и током).

Для электроприборов, предназначенных для работы в цепи переменного тока, рассчитывается так называемая полная мощность (этот параметр обозначают буквой «S»), которая складывается из величины активной мощности и реактивной составляющей.

В соответствии с постоянными изменениями тока и напряжения промышленной частоты (этот процесс описывается синусоидальным законом) меняются и показатели мощности. Поэтому принято рассматривать интегрирующее (суммарное) значение для определенного временного промежутка, а не отдельные мгновенные показатели.

Зависимость мощности от напряжения в трехфазных сетях

Чаще всего применяемая в современной электроэнергетике трехфазная цепь представляет собой три однофазные цепи, которые расположены на комплексной плоскости со сдвигом 120° относительно друг друга. Небольшие отличия между нагрузками в каждой фазе приводят к неравномерности, за счет которой в нулевом проводе создается ток.

Складывая составляющие в каждой фазе, мы получаем общую мощность для подключенного к схеме устройства. При расчете общей мощности применяются специальные приборы:

  • ваттметры для определения активной составляющей (один или несколько);
  • варметры для замера реактивной составляющей.

Использование этих двух приборов возможно при различной нагрузке фаз, симметричной или несимметричной, то есть как в уравновешенных, так и в неуравновешенных трехфазных системах.

Еще один метод измерения, который известен как косвенный, основан на применении амперметра и вольтметра. Вычислив параметр S и разделив его на значение линейного напряжения, мы получаем величину общего тока потребления.

Информация о том, чем отличается эксплуатация устройств в цепях постоянного и переменного тока, помогает максимально точно рассчитать мощность в зависимости от показателей тока и напряжения для каждого конкретного случая и убедиться в безопасности и эффективности эксплуатации электродвигателей и прочего оборудования.

Источник

Меняется-ли мощность лампы накаливания при изменении напряжения?

Привет! Извините за тупой вопрос, не шарю я в электротехнике, а гугл не дал однозначный ответ.

Есть китайский ваттметер, насчет точности не знаю но по отзывам для бытовых нужд пойдет.
Хочу узнать реальную мощность лампочки накаливания 60 Вт. Напряжение в сети показывает 230 вольт. Силу тока 0.275А. Мощность 65 Ватт показывает.

Но! Если напряжение падает, то и ватты снижаются. Например было 210 Вольт и прибор показал мощность около 54-56 ватт.

Так вот вопрос главный: эта мощность лампы накаливания реально так зависит от напряжения? или лампочка постоянно 60 ватт берёт, а это уже прибор вычисляет по формуле, поэтому и различие? где правда?

Добавлено через 9 минут
А при 238 вольт показывает 68 Ватт

Модель лампы накаливания для Proteus
где б разжиться годной моделью лампы накаливания для proteus ? «годная модель» — учитывающая то.

Читайте также:  Определите среднее значение напряжения последовательности прямоугольных импульсов

? изменение тока лампы накаливания от времени наработки
Колеги, если владеет кто инфой по сабжу, поделитесь пжлст. )) Толком ничего не нагуглилось. .

Замена лампы накаливания на LED, бортовой компьютер
Такое дело — решил заменить в машине лампочку накаливания (12V, 5W) на светодиод. Все работает, но.

Поведение напряжений и токов ветвях при изменении напряжения U от 0 до +10В (см.картинку)
Вообще нужно произвести расчёты нелинейной цепи. Вот каким образом источник тока будет влиять на.

Источник

Влияние отклонений напряжения на работу электроприемников

Значительное влияние напряжения сети на работу электроприемников заставляет уделять большое внимание поддержанию напряжения на зажимах потребителей, близкого к номинальному напряжению. Подводимое к потребителям напряжение является одним из качественных показателей электроэнергии.

Изменения напряжения в сети можно классифицировать следующим образом:

1. Медленно протекающие изменения напряжения, которые обычно и бывают при работе сети. Эти изменения называются отклонениями напряжения . Отклонения напряжения определяются как разность действительного напряжения на зажимах электроприемников и номинального напряжения. Отклонения напряжения могут быть отрицательными и положительными величинами. Первым соответствуют понижения напряжения по отношению к номинальному, вторым — повышения напряжения .

Отклонения напряжения в электрических сетях обусловливаются изменениями нагрузок сети, режимов работы электростанций и т. д.

2. Быстро протекающие изменения напряжения вследствие аварий в электрических системах и других причин. В качестве примеров можно указать на короткие замыкания, качание машин, включение и отключение одного из элементов установки и т. п. Быстро протекающие изменения называются колебаниями напряжения .

Все приемники электрической энергии конструируются для работы при определенном номинальным напряжении. Отклонения напряжения от номинального на их зажимах ведет к ухудшению работы электроприемников.

Изменение основных характеристик ламп накаливания в зависимости от напряжения на их зажимах дано на рис. 1.

Рис. 1. Характеристики ламп накаливания: 1 — световой поток, 2 — светоотдача, 3 — срок службы (цифры на ординате для кривых 1 и 2).

Приведенные кривые показывают большое влияние напряжения на работу ламп накаливания. Например, снижению напряжения на 5% соответствует уменьшение светового потока на 18%, а понижение напряжения на 10% вызывает снижение светового потока лампы более чем на 30%.

Снижение светового потока ламп приводит к уменьшению освещенности рабочего места, в результате чего уменьшается производительность труда и ухудшаются качественные показатели.

Плохое освещение рабочих мест, проходов, улиц и т. д. увеличивает количество несчастных случаев с людьми. Понижение напряжения ухудшает к. п. д. ламп накаливания. Снижение напряжения на 10% уменьшает световую отдачу лампы (лм/м/вт) на 20%.

Повышение напряжения сети приводит к увеличению к. п. д. ламп. Но повышение напряжения влечет за собой резкое уменьшение срока службы ламп. При повышении напряжения на 5% срок службы ламп накаливания уменьшается вдвое, а при повышении на 10% — более чем в 3 раза.

Люминесцентные лампы менее чувствительны к отклонениям напряжения сети. Отклонения напряжения на 1 % в среднем вызывают изменение светового потока лампы на 1,25%.

У бытовых нагревательных приборов (плитки, утюги и т. п.) нагревательные элементы состоят из активных сопротивлений. Мощность, отдаваемая ими в зависимости от напряжения сети, выражается уравнением

показывающим, что снижение напряжения сети вызывает резкое уменьшение мощности, отдаваемой нагревательным прибором. Последнее приводит к значительному увеличению времени работы прибора и перерасходу электроэнергии на приготовление пищи и т. д.

Характеристики всех других бытовых электроприборов также зависят от подведенного напряжения. При изменениях напряжения на зажимах электродвигателей изменяются вращающий момент, потребляемая мощность и срок службы изоляции обмоток.

Вращающие моменты асинхронных электродвигателей пропорциональны квадрату приложенного к их зажимам напряжения. Если момент двигателя при номинальном напряжении принять за 100%, то при напряжении 90%, например, вращающий момент составит 81%. Сильное снижение напряжения может даже привести к остановке электродвигателей или невозможности пустить электродвигатель, приводящий в движение машину с тяжелыми условиями пуска (подъемники, дробилки, мельницы и т. д.). Недостаточные (вращающие моменты электродвигателей могут явиться причиной брака продукции, порчи полуфабриката и т. п.

Зависимости изменения потребляемой электродвигателями мощности от напряжения при стационарном режиме работы системы называются статическими характеристиками электрической нагрузки потребителей .

Читайте также:  Германиевые транзисторы в преобразователях напряжения

При понижении напряжения активная мощность, потребляемая электродвигателем, уменьшается вследствие уменьшения вращающего момента и связанного с этим увеличения скольжения.

Увеличение скольжения вызывает возрастание потерь активной мощности в двигателе. При увеличении напряжения скольжение уменьшается и потребная для привода механизма мощность увеличивается. Потери активной мощности в электродвигателе уменьшаются.

Анализ показывает, что активная нагрузка от электродвигателей при изменениях напряжения, соответствующих нормальным режимам работы системы, меняется незначительно и потому может приниматься постоянной.

Изменение реактивной нагрузки электродвигателей от напряжения зависят от соотношения реактивной мощности намагничивания и реактивной мощности рассеяния двигателей. Реактивная мощность намагничивания изменяется примерно пропорционально четвертой степени напряжения. Реактивная мощность рассеяния, зависящая от тока электродвигателей, изменяется обратно пропорционально примерно второй степени напряжения.

При снижениях напряжения против номинального (до некоторой величины) реактивная нагрузка электродвигателей всегда снижается. Объясняется это тем, что реактивная мощность намагничивания, составляющая до 70% всей реактивной мощности, потребляемой электродвигателем, снижается быстрее, чем увеличивается реактивная мощность рассеяния.

Зависимости потребления реактивной мощности от напряжения сети для некоторых потребителей приведены на рис. 2. Эти кривые — статические характеристики электрических нагрузок потребителей в целом, т. е. с учетом влияния на них трансформаторов, освещения и т. д.

Рис. 2. Статические характеристики электрических нагрузок: 1 — бумажный комбинат, cos φ = 0,92, 2 — металлообрабатывающий завод, cos φ = 0,93, 3 — текстильная фабрика, cos φ = 0,77.

Кривая 1 бумажного комбината идет очень круто. Чем меньше загрузка двигателей и чем выше коэффициент мощности их при номинальном напряжении, тем круче идет кривая зависимости потребляемой реактивной мощности от напряжения сети. Длительное снижение напряжения на 10% на зажимах электродвигателей при полной их загрузке приводит вследствие более высокой температуры обмоток к износу изоляции двигателей примерно вдвое скорее, чем при номинальном напряжении.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Ток, напряжение, мощность: основные характеристики электричества

Электроэнергия давно используется человеком для удовлетворения своих потребностей, но она невидима, не воспринимается органами чувств, потому сложна для понимания. С целью упрощения объяснения электрических процессов их довольно часто сравнивают с гидравлическими характеристиками движущейся жидкости.

Например, к нам в квартиру приходит по проводам электрическая энергия от далеко расположенных генераторов и вода по трубе от создающего давление насоса. Однако, отключенный выключатель не позволяет светиться лампочкам, а закрытый водопроводный кран — литься воде из крана. Чтобы совершалась работа надо включить выключатель и открыть кран.

Направленный поток свободных электронов по проводам устремится к нити накала лампочки (пойдет электрический ток) , которая станет излучать свет. Вода, вытекающая из крана, будет стекать в раковину.

Эта аналогия позволяет также понимать количественные характеристики, ассоциировать силу тока со скоростью перемещения жидкости, оценивать другие параметры.

Напряжение электросети сравнивают с потенциалом энергии источника жидкости. К примеру, возрастание гидравлического давления насосом в трубе создаст большую скорость перемещения жидкости, а увеличение напряжения (или разности между потенциалами фазы — входящего провода и рабочего нуля — отходящего) усилит накал лампочки, силу ее излучения.

Сопротивление электрической схемы сопоставляют с силой торможения гидравлическому потоку. На скорость перемещения потока влияют:

засоренность и изменение сечения каналов. (В случае с водопроводным краном — положение регулирующего вентиля.)

На величину электрического сопротивления влияет несколько факторов:

строение вещества, определяющее наличие свободных электронов в проводнике и влияющее на удельное сопротивление;

площадь поперечного сечения и длина токовода;

Электрическую мощность тоже сравнивают с энергетическими возможностями потока в гидравлике и оценивают по выполненной работе в единицу времени. Мощность электроприбора выражается через потребляемый ток и подведенное напряжение (для цепей переменного и постоянного тока).

Все эти характеристики электроэнергии исследованы известными учеными, которые дали определения току, напряжению, мощности, сопротивлению и описали математическими методами взаимные связи между ними.

В приведенной таблице показаны общие соотношения для цепей постоянного и переменного тока, которые можно применять для анализа работы конкретных схем.

Рассмотрим несколько примеров их использования.

Читайте также:  Как получить напряжение 6000 вольт

Пример №1. Как рассчитать сопротивление и мощность

Допустим, требуется подобрать токоограничивающий резистор для блока питания схемы освещения. Нам известно напряжение питания бортовой сети «U», равное 24 вольта и ток потребления «I» в 0,5 ампера, который нельзя превышать. По выражению (9) закона Ома вычислим сопротивление «R». R=24/0,5=48 Ом.

На первый взгляд номинал резистора определен. Однако, этого недостаточно. Для надежной работы семы требуется выполнить расчет мощности по току потребления.

Согласно действию закона Джоуля — Ленца активная мощность «Р» прямо пропорционально зависит от тока «I», проходящего через проводник, и приложенного напряжения «U». Эта взаимосвязь описана формулой (11) в приведенной таблице.

Это же значение получим, если воспользуемся формулами (10) или (12).

Проведенный расчет мощности резистора по току его потребления показывает, что в выбираемой схеме надо использовать сопротивление величиной 48 Ом и 12 Вт. Резистор меньшей мощности не выдержит приложенных нагрузок, будет греться и со временем сгорит.

Этим примером показана зависимость того, как на мощность потребителя влияют ток нагрузки и напряжение в сети.

Пример №2. Как рассчитать ток

Для группы розеток, предназначенных для питания бытовых электроприборов на кухне, необходимо подобрать защитный автоматический выключатель. Мощности приборов по паспортным данным составляют 2,0, 1,5 и 0,6 кВт.

Решение. В квартире используется однофазная переменная сеть 220 вольт. Общая мощность всех приборов, подключенных в работу одновременно, составит 2,0+1,5+0,6=4,1 кВт=4100 Вт.

По формуле (2) определим общий ток группы потребителей: 4100/220=18,64 А.

Ближайший по номиналу автоматический выключатель имеет величину срабатывания 20 ампер. Его и выбираем. Автомат меньшего значения на 16 А будет постоянно отключаться от перегрузки.

Отличия параметров электросхем на переменном токе

При анализе параметров электроприборов следует учитывать особенности их работы в цепях переменного тока, когда, благодаря влиянию промышленной частоты у конденсаторов возникают емкостные нагрузки (сдвигают вектор тока на 90 градусов вперед от вектора напряжения), а у обмоток катушек — индуктивные (ток на 90 градусов отстает от напряжения). В электротехнике их называют реактивными нагрузками . Они в комплексе создают реактивные потери мощности «Q», которые не выполняют полезной работы.

На активных нагрузках отсутствует сдвиг фазы между током и напряжением.

Таким образом, к активной величине мощности электроприбора в цепях переменного тока добавляется реактивная составляющая, за счет которой увеличивается общая мощность, которую принято называть полной и обозначать индексом «S».

Переменный синусоидальный ток в однофазной сети

Электрический ток и напряжение промышленной частоты меняются во времени по синусоидальному закону. Соответственно этому происходит изменение мощности. Определять их параметры в различные мгновенные моменты времени не имеет особого смысла. Поэтому выбирают суммарные (интегрирующие) значения за определенный временной промежуток, как правило — период колебания Т.

Знание отличий параметров цепей для переменного и постоянного тока позволяет правильно рассчитывать мощность через ток и напряжение в каждом конкретном случае.

В принципе они состоят из трех одинаковых однофазных цепей, сдвинутых друг относительно друга на комплексной плоскости на 120 градусов. Они немного отличаются нагрузками в каждой фазе, сдвигающими ток от напряжения на угол фи. За счет этой неравномерности создается ток I0 в нулевом проводе.

Напряжение в этой системе состоит из напряжений в фазах (220 В) и линейных (380 В).

Мощность прибора трехфазного тока, подключенного к схеме, складывается из составляющих в каждой фазе. Ее измеряют с помощью специальных приборов: ваттметров (активная составляющая) и варметров (реактивная). Рассчитать полную мощность потребления прибора трехфазного тока можно на основе замеров ваттметра и варметра с использованием формулы треугольника.

Существует еще косвенный метод измерения, основанный на использовании вольтметра и амперметра с последующими вычислениями полученных значений.

Также можно рассчитать общий ток потребления, зная величину полной мощности S. Для этого достаточно ее разделить на величину линейного напряжения.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Оцените статью
Adblock
detector