Как найти скорость частицы через напряжение

Формула электрического напряжения и скорость зарядов

Природа так устроена, что для того, чтобы выполнить какое-либо действие, необходимо затратить энергию. Так и для возникновения тока необходимо электрическое напряжение. Формула скорости движения частиц была получена экспериментальным путём и включает в себя ускоряющую разность потенциалов. Она, по сути, и определяет силу электротока и работу, которая совершается по переносу единичного заряда из одной точки поля в другую.

Общие сведения

Электрические явления начали интересовать философов ещё со времён Древней Греции. Существует легенда, согласно которой люди, жившие более двух тысяч лет назад, находили на острове Магнезия камни, притягивающие к себе металлические предметы. Их назвали магнитами. В то же время философ Фалес обнаружил любопытное свойство янтаря. Если его потереть об шерсть, то к нему прилипали лёгкие предметы. Благодаря этим двум явлениям природы и было открыто электричество, ранее называемое янтарностью.

Но на протяжении многих столетий учёные не могли объяснить силы, заставляющие взаимодействовать тела между собой. Существенный вклад в развитие учения внёс Отто Герик, создавший первую электромашину.

Затем Питера ван Мушенбрук смог изготовить источник электричества, названный лейденской банкой. С этого момента начался бум изучения явлений. В своё время их исследовали такие физики, как Гильберт, Кулон, Ампер, Эдисон, Франклин, Вольт, Фарадей.

Благодаря их стараниями стало известно, что электричество и магнетизм — это явления, не существующие друг без друга. Описывать их начали, ведя характеристику, названную электромагнитным полем. Возникновение же последней связано с существованием заряда и возможностью его переноса элементарными частицами. Их условно разделили на два вида:

В природе если тело находится в равновесии, то есть на него не оказывается стороннее воздействие, движение частиц происходит хаотично и обусловлено тепловыми процессами.

Но если носители заставить двигаться в одном направлении, возникнет ток. Характеризуется он силой и работой которую необходимо затратить для переноса заряда из одной точки поля в другую.

Затраченную при движении энергию называют электродвижущей силой, описывающейся напряжением. Величиной зависящей от изменения потенциала поля в той или иной его точке. В 1827 году Георг Ом опытным путём доказал пропорциональную зависимость силы тока и напряжения. Этот фундаментальный закон был назван его именем, записывается так: I = U / R. Правило установило, что сила электротока зависит от работы, совершаемой полем для переноса заряда из точки A в B.

Физический смысл величины

Можно провести простой эксперимент. Для этого необходимо собрать схему, состоящую из последовательно включённых двух ламп разного размера. Если их запитать от источника тока, то можно будет обнаружить, что большая лампа светит ярче по сравнению с малой. При этом величина силы тока для любого участка цепи будет одинаковой, так как устройств для накопления зарядов в цепи нет.

Поэтому можно предположить, что существует какая-то разница в режиме работы этих двух ламп. Как оказалось, это отличие определяется физической величиной. Она является характеристикой поля и носит название электрическое напряжение. Измеряется параметр в вольтах [В] в честь итальянского физика, химика и астролога, придумавшего гальванический элемент, электрометр, конденсатор и электроскоп.

За каждую секунду через лампы протекает одинаковый ток. Он нагревает спирали настолько сильно, что они начинают светиться. При перемещении заряда по цепи на него действует сила электрического поля, проталкивающая частицы через спирали. Можно сказать, что на тело воздействует сила и им выполняется работа. Поэтому в лампе, которая светит ярче, электрическая сила (электроток) совершает большую работу по сравнению со вторым источником света.

Похожую ситуацию можно встретить и при рассмотрении течения жидкости. Электрический ток можно уподобить движению воды. При этом можно провести следующую аналогию:

  • жидкость — заряды;
  • трубы — проводники;
  • насос — источник тока.

Пусть есть бак, с которого вода вытекает по трубе вертикально вниз и крутит турбину. Высота устройства H. Затем жидкость попадает в новый бак, к которому подсоединена другая турбина меньшего размера. Высота второй системы h. Циркуляцию воды обеспечивает установленный на пол насос. Работа, которая совершается для вращения турбин, разная. То есть одна и та же масса воды в зависимости от своего расположения затрачивает разную энергию. Отсюда по аналогии электрическое поле можно сравнить с высотой труб.

Получается, что в гидроустановке вначале работу совершает сила тяжести, а затем давления. В электрической же цепи электрополе и сторонняя сила в источнике тока

. Как показали опыты, отношение работы к величине заряда, который протекает во внешней цепи, не зависит от его количества. Таким образом, напряжение всегда задаётся между любыми двумя точками электрической цепи и является важной характеристикой.

Читайте также:  Протокол измерения напряжения питающей сети

Измерение и нахождение

Обозначается напряжение буквой U. Параметр равен отношению: U = A / q, где: A — работа поля, выполняемая для переноса q из одного места в другое, q — значение заряда. Из этой формулы можно получить размерность для измерения единицы напряжения. В физике принято работу считать в джоулях [Дж], а величину заряда в кулонах [Кл].

Следовательно, параметр измеряется отношением [Дж / Кл]. Но это настолько важная электрическая величина, что для неё выбрали не только своё обозначение, но и название единицы измерения — вольт. В международном обозначении используется символ V (volt). Один вольт представляет собой такое напряжение между точками электрической цепи, при котором для переноса заряда в один кулон полем совершается работа в один джоуль.

Раз существует физическая величина, значит, должно быть устройство, предназначенное для её измерения. Называется такой измеритель вольтметр. На схеме его обозначают с помощью круга и стоящего внутри него символа V. Следует отметить, что в зависимости от измеряемого значения могут быть использованы более точные устройства, микровольтметр или киловольтметр.

Измеритель всегда подключается параллельно измеряемым точкам. При этом положительная клемма присоединяется к плюсовой части схемы, а отрицательная к минусовой. При измерении вольтметр не оказывает влияние на электрические параметры. Связанно это с тем, что устройство обладает высоким внутренним омическим с сопротивлением и ток через него практически не протекает.

Следует отметить, что существует переменное напряжение и постоянное. Первое называют так из-за того, что оно постоянно изменяет знак с течением времени. Это связано с изменением направления движения носителей зарядов. Переменное напряжение, в отличие от постоянного, описывается функцией. Чаще всего используется синусоидальная. Формула для его расчёта выглядит так: u (t)= Um * sin (wt+f), где Um — максимальная амплитуда, wt — частота, f — угол между гармоническим сигналом напряжения и тока.

Прибор, используемый для наглядного наблюдения за формой сигнала, называют осциллограф. Им можно измерить напряжение в зависимости от модели до гигагерца. Устройство бывает аналоговым, цифровым и стробирующим. Осциллограф считается устройством для профессионалов и используется для радиоэлектронных приборов.

Решение задач

Выполнение расчётов помогает не только закрепить теоретический материал, но и научиться практическому применению знаний. Так, применение закона Ома позволяет правильно рассчитывать электрические схемы, подбирать нужные сопротивления. Вот несколько из типовых заданий, рассчитанных на учащихся седьмых классов:

  1. Определить напряжение на обмотке электропускателя, если при прохождении через неё заряда электрическое поле выполняет работу в 10 джоулей. Напряжённость поля составляет 4 В, а действующая сила равняется 8 Н. Для того чтобы определить напряжение, нужно вычислить величину заряда. Сделать это можно из выражения: E = F / q. Отсюда q = F / E = 8 Н / 4 В = 2 Кл. Теперь можно использовать формулу: U = A / q. Все нужные данные известны, поэтому после подстановки значений и вычисления в ответе должно получиться: U = 10 Дж / 2 Кл = 5 В.
  2. Вычислить максимальное напряжение, которое можно подать на электрическую лампу сопротивлением 500 Ом, если она горит в полный накал при токе 0,5 ампер. Согласно закону Ома, напряжение и ток связаны формулой: I = U / R. Из неё можно выразить напряжение: U = I * R = 0,5 A * 500 Ом = 250 В.
  3. При переносе 240 Кл электричества из одной точки схемы в другую за 16 минут выполняется работа в 120 Дж. Найти напряжение и силу тока. Электроток можно вычислить из соотношения: I = q / t, а напряжение воспользовавшись формулой: U = A / q. Подставив исходные данные, можно будет получить: I = 240 Кл / 16 * 60 с = 0,25 А и U = 1200 Дж / 240 Кл = 5 В.
  4. Какова будет сила тока, если при напряжении 4 В за одну секунду расходуется 0,8 Дж электроэнергии. Чтобы решить задачу, нужно вспомнить, как зависят электроток и напряжение от величины заряда. Записав отношения и подставив одно в другое, получится формула: I = A / U * t = 0,8 Дж * Кл / 4 В * с = 0,2 А = 200 мА.

Таким образом, для решения задач, связанных с электрическим напряжением, нужно запомнить несколько формул и понимать суть процесса. Но при этом важно знать размерности величин. Причём все вычисления принято выполнять в Международной системе единиц. А также следует знать, что скорость упорядоченного движения носителей заряда зависит от действия внешнего электрического поля. И находится как V = I / q * n *S, где n — концентрация (табличная величина), q — заряд, S — площадь поперечного сечения проводника.

Источник

Зависимость скорости электрона от напряженности электрического поля. Понятия эффективной массы и подвижности.

электрический ток в образце зависит не только от концентрации носителей заряда, но и от скорости с которой они переносятся под действием электрического поля. После того как мы научились рассчитывать концентрацию свободных носителей в твердом теле рассмотрим как ведут себя носители заряда в кристалле при наложении на него электрического поля.

Читайте также:  Пропадает напряжение в розетке под нагрузкой

Рассмотрение начнем с поведения единичного свободного заряда в нейтральной не взаимодействующей с зарядом среде (допустим в вакууме) при наличии электрического поля E, которое накладывается на среду в момент t=0. Электрическое поле приводит к возникновению силы электростатического взаимодействия F, под действием которой электрон начнет ускоряться.

, (1.25)

где q, m – заряд и масса электрона, v и a его скорость и ускорение. Таким образом в электрическом поле заряженная частица разгоняется с постоянным ускорением пропорциональным напряженности электрического поля и обратно пропорциональным ее массе. При этом энергия частицы будет изменяться со временем по квадратичному закону относительно импульса частиц или ее волнового вектора k (p= ћ k, где ћ = h/(2π), h – постоянная Планка).

(1.26)

Поскольку приобретаемая заряженной частицей энергия не зависит от направления электрического поля зависимость (1.5) симметрична относительно импульса и волнового вектора (это параболоид выпуклость которого определяется массой частицы).

Измерив зависимость энергии частицы от импульса (или волнового числа мы можем ) используя (1.5) определить эффективную массу. Действительно дважды продифференцировав (1.5) получим.

(1.27)

Предположим, что на частицу действует некоторая тормозящая сила F* о существовании которой мы не знаем. Тогда уравнение (1.4) можно переписать в следующем виде:

(1.28)

Соответственно, если для определения массы электрона (или любой другой заряженной частицы) в некоторой взаимодействующей с частицей среде воспользуемся формулой (1.6), то вместо массы электрона будет рассчитана некоторая другая величина, которую будем назвать эффективной массой электрона в данной среде.

(1.29)

Поскольку при движении электронов (или других заряженных частиц) в твердом теле внутренние поля неизвестны, то их характеристики используют понятие эффективной массы.

Рис. 1.18. Изменение скорости заряженной частицы в электрическом поле, при отсутствии взаимодействия со средой(1) и при торможении частицы средой.

На рис. 1.5 показано как будет со временем изменяться скорость свободной частицы в электрическом поле, в соответствии с (1.4) и (1.7 ). Эти формулы справедливы для случая, когда заряженная частица не испытывает столкновений и в соответствии с ними частицу можно разогнать электрическим полем до бесконечной энергии. Именно этот принцип был использован в первых линейных ускорителях элементарных частиц.

По мере разгона частицы возрастает ее импульс и соответствующее ему волновое число (величина, характеризующая величину волнового вектора). На рис. 1.6. показаны соответствующие зависимости изменения энергии частицы от величины волнового числа (импульса).

Рис. 1.19. Зависимости энергии свободных зарядов от величины их волнового числа (импульса).

Как видно из рис. 1.18. и рис. 1.19 набираемая в электрическом поле энергия частицы зависит от скорости частицы (волнового числа) и массы. Поскольку выпуклость кривой характеризуется ее второй производной можно сделать вывод, что чем меньше эффективная масса частицы, тем больше выпуклость, см. (1.27) и (1.29).

В кристалле энергия электрона (дырки) в разрешенной зоне не может превысить значение потолка разрешенной зоны, следовательно импульс и волновой вектор так же имеют ограничения, причем максимальное значение волнового числа должно быть кратно постоянной решетки. На рис. 1.20 показана рассчитанное изменение энергии электрона от величины волнового числа (значения) импульса для кубического кристалла.

Рис. 1.20. Зависимость энергии от волнового числа (импульса) в кристалле (a – постоянная решетки вдоль заданного направления)

Из рисунка видно, что в электронном представлении у потолка валентной зоны знак эффективной массы изменяется (должно происходить отражение частицы). Следует отметить, что у дна зоны проводимости энергия имеет параболическую зависимость от импульса (волнового числа):

(1.31)

Если вести отсчет от дна зоны проводимости Ec = 0, то зависимость энергии электрона от импульса (волнового вектора) будет такая же как для свободного электрона см. (1.26). Это дает нам основание рассматривать электроны в зоне проводимости, находящиеся вблизи дна зоны проводимости как свободные частицы (иногда говорят квазисвободные или квазичастицы), считая что они подчиняются тем же закономерностям, что и свободные частицы, но отличаются от них величиной эффективной массы, которую вблизи дна зоны можно считать постоянной (пока выполняется параболическое приближение).

Аналогичный подход справедлив и для дырки. Вводя дырку мы переходим от электронного представления к дырочному, т.е. мы принимаем, то масса дырки положительная, а заряд отрицательный и энергия ее отсчитывается от потолка валентной зоны к ее дну, тогда дырка будет вести себя так же как электрон у потолка валентной зоны. При этом энергия дырки у потолка валентной зоны так же изменяется по параболическому закону как и для электрона:

(1.32)

Таким образом дырку, находящуюся потолка валентной зоны так же можно рассматривать как свободную частицу.

В реальной жизни электрон в электрическом поле не может набирать энергию до бесконечности, рано или поздно он столкнется с другой частицей и отдаст ей накопленную энергию. Вероятность столкновений частиц в газах и твердых телах характеризуется временем или длиной их свободного пробега. Эти же величины характеризуют движение носителей заряда в твердом теле.

Читайте также:  Пример расчета потерь напряжения в сети наружного освещения

Схема, приведенная на рис. 1.21 показывает изменение скорости электрона в образце, к которому приложено напряжение и поясняет физический смысл подвижности. Электрон участвует в хаотическом тепловом движении, причем в различные моменты времени его скорость имеет случайное направление так что смещение его в любом направлении равновероятно. В электрическом поле электрон приобретает дополнительную скорость под действием поля, так что продолжая участвовать в тепловом движении он постепенно смещается под действием поля. Средняя скорость тем выше, чем больше длина свободного пробега и чем меньше эффективная масса частицы.

Рис. 1. 21. Диаграмма, поясняющая движение электрона в твердом теле

Поскольку электрон набирает энергию в поле за время свободного пробега и отдает ее при столкновении с решеткой или другими носителями заряда, то средняя скорость, которую приобретают носители в направлении поля, будем называть ее скоростью дрейфа зарядов vдр должна зависеть от средней длины свободного пробега τ.

(1.36)

Коэффициент пропорциональности между дрейфовой скоростью и напряженностью электрического поля обычно называют подвижностью носителей заряда и обозначают μ:

Как видно из (1.36) и (1.37) подвижность имеет размерность в системе СИ м 2 /(Вс) , широко так же используются значения подвижности с размерностью см 2 /(Вс).

Предположим, что ток через ток образце создается электронами концентрация которых n см -3 и средняя дрейфовая скорость vдр. Поскольку величина тока равна заряду, проходящему через сечение образца в единицу времени можем записать:

Для единичной площади из (1.35) получится уравнение для плотности тока:

Поскольку в дифференциальной форме закон Ома имеет вид:

где σ – электропроводность образца (Ом . м или Ом . см )

Сравнив (1.39) и (1.40) получим формулу для электропроводности:

Если электрический ток создается различными носителями (всего N типов) с концентрацией каждого типа ni , то:

(1.42)

таким борзом мы видим, что проводимость материала определяется двумя основными параметрами: подвижностью носителей заряда и их концентрацией.

Величина подвижности пропорциональна длине свободного пробега, которая зависит от частоты столкновений носителей заряда с решеткой или атомами примеси. Поскольку при столкновениях носители отдают энергию, а затем вновь набирают, т.е. энергия носителя релаксирует, то принято говорить о механизмах ее релаксации. За время релаксации принимают среднее время в течение которого электрон полностью отдает свою энергию.

Существует множество механизмов рассеяния (релаксации ) энергии свободных носителей заряда. Однако, для полупроводников, наиболее существенные два: рассеяние на решетки и рассеяние на ионизованной примеси.

Для рассеяния на решетке справедливо :

T -3/2 и с ростом температуры подвижность носителей падает. Действительно длина свободного пробега носителей заряда тем меньше, чем сильнее колеблется решетка l

1/T , для скорости носителей справедливо v

1/T 3/2 . Таким образом рост, в случае если доминирует рассеяние на решетке (примесей мало), то с ростом температуры подвижность падает и следовательно падает проводимость ( как это имеет место в металлах).

При рассеянии на заряженной примеси μi

Таким образом, если в образце доминирует рассеяние на примесях, то с ростом температуры подвижность возрастает и соответственно возрастает проводимость.

Значения множителей μr0 и μi0 зависят от химического состава материала, наличия в нем дефектов и примесей, степени их ионизации (для разных образцов одного материала эти значения могут быть различными).

При одновременном действии нескольких механизмов рассеяния для расчета подвижности можно воспользоваться понятием эффективной подвижности носителей, которая будет определяться всеми, имеющими место механизмами рассеяния. Для случая, когда доминирует рассеяние на колебаниях решетки и ионизованной примеси для эффективной подвижности можно записать (считая, что акты рассеяния — независимые события):

(1.45)

На рис. 1.21 схематически показана зависимость эффективной подвижности от температуры в полупроводниковом материале с разной концентрацией примеси. Графики построены в соответствии с формулами (1.43) и (1.45). Кривая 1 соответствует образцу без примесей. Кривые 2, 3, 4 образцам с разным содержанием примеси (большему номеру соответствует большее содержание примеси). На этом же график приведены соответствующие кривые для чисто решеточного μr и примесного рассеяния: μr2 , μr3, μr4.

Характер изменения электропроводности полупроводников с температурой, в том случае, если не изменяется концентрация носителей заряда будет определяться температурной зависимостью подвижности и зависимости будут аналогичны показанным на рис. 2 (это может быть в примесной области температурной зависимости проводимости).

Рис. 1.21. Диаграмма, поясняющая температурную зависимость подвижности μef, при рассеянии на решетке μr и ионизированной примеси μiK.

Дата добавления: 2018-06-01 ; просмотров: 925 ; Мы поможем в написании вашей работы!

Источник

Оцените статью
Adblock
detector