Как определить допустимое потери напряжение линии

Расчет сетей по потерям напряжения

Потребители электрической энергии работают нормально, когда на их зажимы подается то напряжение, на которое рассчитаны данный электродвигатель или устройство. При передаче электроэнергии по проводам часть напряжения теряется на сопротивление проводов и в результате в конце линии, т. е. у потребителя, напряжение получается меньшим, чем в начале линии.

Понижение напряжения у потребителя по сравнению с нормальным сказывается на работе токоприемника, будь то силовая или осветительная нагрузка. Поэтому при расчете любой линии электропередачи отклонения напряжений не должны превышать допустимых норм, сети, выбранные по току нагрузки и рассчитанные на нагрев, как правило, проверяют по потере напряжения.

Потерей напряжения Δ U называют разность напряжений в начале и конце линии (участка линии) . ΔU принято определять в относительных единицах — по отношению к номинальному напряжению. Аналитически потеря напряжения определена формулой:

где P — активная мощность, кВт, Q — реактивная мощность, квар, ro — активное сопротивление линии, Ом/км, xo — индуктивное сопротивление линии, Ом/км, l — длина линии, км, U ном — номинальное напряжение, кВ.

Значения активного и индуктивного сопротивлений (Ом/км) для воздушных линий, выполненных проводом марки А-16 А-120 даны в справочных таблицах. Активное сопротивление 1 км алюминиевых (марки А) и сталеалюминевых (марки АС) проводников можно определить также по формуле:

где F — поперечное сечение алюминиевого провода или сечение алюминиевой части провода АС, мм 2 (проводимость стальной части провода АС не учитывают).

Согласно ПУЭ («Правилам устройства электроустановок»), для силовых сетей отклонение напряжения от нормального должно составлять не более ± 5 %, для сетей электрического освещения промышленных предприятий и общественных зданий — от +5 до — 2,5%, для сетей электрического освещения жилых зданий и наружного освещения ±5%. При расчете сетей исходят из допустимой потери напряжений.

Учитывая опыт проектирования и эксплуатации электрических сетей, принимают следующие допустимые величины потери напряжений: для низкого напряжения — от шин трансформаторного помещения до наиболее удаленного потребителя — 6%, причем эта потеря распределяется примерно следующим образом: от станции или понизительной трансформаторной подстанции и до ввода в помещение в зависимости от плотности нагрузки — от 3,5 до 5 %, от ввода до наиболее удаленного потребителя — от 1 до 2,5%, для сетей высокого напряжения при нормальном режиме работы в кабельных сетях — 6%, в воздушных— 8%, при аварийном режиме сети в кабельных сетях – 10 % и в воздушных— 12 %.

Считают, что трехфазные трехпроводные линии напряжением 6—10 кВ работают с равномерной нагрузкой, т. е что каждая из фаз такой линии нагружена равномерно. В сетях низкого напряжения из-за осветительной нагрузки добиться равномерного ее распределения между фазами бывает трудно, поэтому там чаще всего применяют 4-проводную систему трехфазного тока 380/220 В. При данной системе электродвигатели присоединяют к линейным проводам, а освещение распределяется между линейными и нулевым проводами. Таким путем уравнивают нагрузку на все три фазы.

При расчете можно пользоваться как заданными мощностями, так и величинами токов, которые соответствуют этим мощностям. В линиях, которые имеют протяженность в несколько километров, что, в частности, относится к линиям напряжением 6—10 кВ, приходится учитывать влияние индуктивного сопротивления провода на потерю напряжения в линии.

Для подсчетов индуктивное сопротивление медных и алюминиевых проводов можно принять равным 0,32—0,44 Ом/км, причем меньшее значение следует брать при малых расстояниях между проводами (500—600 мм) и сечениях провода выше 95 мм2, а большее — при расстояниях 1000 мм и выше и сечениях 10—25 мм2.

Потеря напряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле

где первый член в правой части представляет собой активную, а второй — реактивную составляющую потери напряжения.

Порядок расчета линии электропередачи на потерю напряжения с проводами из цветных металлов с учетом индуктивного сопротивления проводов следующий:

1. Задаемся средним значением индуктивного сопротивления для алюминиевого или сталеалюминевого провода в 0,35 Ом/км.

2. Рассчитываем активную и реактивную нагрузки P, Q.

3. Подсчитываем реактивную (индуктивную) потерю напряжения

4. Допустимая активная потеря напряжения определяется как разность между заданной потерей линейного напряжения и реактивной:

5. Определяем сечение провода s, мм2

где γ — величина, обратная удельному сопротивлению ( γ = 1/ro — удельная проводимость).

6. Подбираем ближайшее стандартное значение s и находим для него по справочной таблице активное и индуктивное сопротивления на 1 км линии ( ro, хо ).

7. Подсчитываем уточненную величину потери напряжения по формуле.

Полученная величина не должна быть больше допустимой потери напряжения. Если же она оказалась больше допустимой, то придется взять провод большего (следующего) сечения и произвести расчет повторно.

Для линий постоянного тока индуктивное сопротивление отсутствует и общие формулы, приведенные выше, упрощаются.

Расчет сетей п остоянного тока по потерям напряжения.

Пусть мощность P, Вт, надо передать по линии длиной l, мм, этой мощности соответствует ток

где U — номинальное напряжение, В.

Сопротивление провода линии в оба конца

Читайте также:  Когда заряд конденсатора равен 5 нкл напряжение между его обкладками

где р — удельное сопротивление провода, s — сечение провода, мм2.

Потеря напряжения на линии

Последнее выражение дает возможность произвести проверочный расчет потери напряжения в уже существующей линии, когда известна ее нагрузка, или выбрать сечение провода по заданной нагрузке

Расчет сетей однофазного переменного тока по потерям напряжения.

Если нагрузка чисто активная (освещение, нагревательные приборы и т. п.), то расчет ничем не отличается от приведенного расчета линии постоянного тока. Если же нагрузка смешанная, т. е. коэффициент мощности отличается от единицы, то расчетные формулы принимают вид:

потери напряжения в линии

а необходимое сечение провода линии

Для распределительной сети 0,4 кВ, питающей технологические линии и другие электроприемники лесопромышленных или деревообрабатывающих предприятий, составляют ее расчетную схему и расчет потери напряжения ведут по отдельным участкам. Для удобства расчетов в таких случаях пользуются специальными таблицами. Приведем пример такой таблицы, где приведены потери напряжения в трехфазной ВЛ с алюминиевыми проводами напряжением 0,4 кВ.

Потери напряжения определены следующей формулой:

где Δ U — потеря напряжения, В, Δ U табл — значение относительных потерь, % на 1 кВт•км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт•км.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Пример определения потери напряжения в линии 10 кВ

В данной статье я буду рассматривать 2 примера определения потери напряжения в воздушной линии 10 кВ, когда нагрузка подключена в конце линии и с несколькими нагрузками вдоль линии.

Пример 1 – Определение потери напряжения, когда нагрузка подключена в конце линии

Определить потерю напряжения в трехфазной воздушной линии с номинальным напряжением Uном.=10 кВ протяженностью l = 2 км, питающей электрооборудование коммунального предприятия мощностью Р=100 кВт. Коэффициент мощности нагрузки cosϕ = 0,8. Линия выполнена алюминиевыми проводами марки А-25 сечением 25 мм2, расстояние между фазами 600 мм.

1. Определяем активное сопротивление провода марки А-25:

  • γ – значение удельной проводимости для медных и алюминиевых проводов при температуре 20 °С принимается: для медных проводов – 53 м/Ом*мм2; для алюминиевых проводов – 31,7 м/Ом*мм2;
  • s – номинальное сечение провода(кабеля),мм2;

Также вы можете встретить в тех. литературе еще одну формулу по определению активного сопротивления провода (кабеля):

  • ρ – значение удельного сопротивления принимается: для медных проводов — 0,017-0,018 Ом*мм2/м; для алюминиевых проводов – 0,026 — 0,028 Ом*мм2/м, см. таблицу 1.14 [Л2. с.30].

2. Определяем индуктивное сопротивление для провода марки А-25 [Л1.с.420]:

  • Дср. – среднее геометрическое расстояние между осями проводов, мм;
  • d = 6,40 мм – диаметр провода, для марки провода А-25. Значение диаметра провода можно определить по ГОСТ 839-80 – «Провода неизолированные для воздушных линий электропередач» таблицы 1 – 4. В данном расчете я привожу значение диаметра провода, только для провода марки А, для остальных марок проводов значения диаметров проводов вы сможете найти непосредственно в самом ГОСТе;
  • µ — относительная магнитная проницаемость для цветных металлов (немагнитных) равна 1, для стальных проводов µ может достигать значений 10 3 и даже больше.

2.1 Определяем среднее геометрическое расстояние между осями трех проводов проложенных в одной плоскости [Л1.с.419]:

где: расстояние между проводами первой и второй фазы Д1-2= 600 мм, между второй и третью Д2-3 = 600 мм, между первой и третью Д1-3= 600 + 25 + 600 = 1225 мм.

3. Определяем коэффициент мощности tgϕ, зная cosϕ:

4. Определяем потерю напряжения в линии [Л1.с.422]:

Пример 2 – Определение потери напряжения с несколькими нагрузками вдоль линии

Определить потерю напряжения в трехфазной сети 10 кВ, изображенной на рис.1. Сеть выполнена воздушной линией с алюминиевыми проводами марки А-35 сечением 35 мм2 на участке А-Б и проводами марки А-25 сечением 25 мм2 на участке Б-В. Расстояние между фазами равно 600 мм. Соответствующая нагрузка, коэффициент мощности cosϕ в ответвлениях, а также длины участков сети указаны на схеме.

1. Определяем активное сопротивление провода марки А-35 на участке А-Б:

2. Определяем индуктивное сопротивление для провода марки А-35 [Л1.с.420]:

2.1 Определяем среднее геометрическое расстояние между осями трех проводов проложенных в одной плоскости [Л1.с.419]:

где: расстояние между проводами первой и второй фазы Д1-2= 600 мм, между второй и третью Д2-3 = 600 мм, между первой и третью Д1-3= 600 + 35 + 600 = 1235 мм.

3. Определяем коэффициент мощности tgϕ1, зная cosϕ1:

4. Значения активного и индуктивного сопротивления для марки провода А-25 берем из примера 1: r02 = 1,26 Ом/км; х02 = 0,256 Ом/км; tgϕ2 = 0,75.

5. Определяем суммарную потерю напряжения в линии 10 кВ [Л1.с.422] :

  • Uном. – номинальное напряжение, В;
  • r01, x01, r02, x02 – активные и индуктивные сопротивления трехфазных линий, Ом/км;
  • Р1,Р2 – мощности в ответвлениях, кВт;
  • L1,L2 – длины от начала линии до соответствующего ответвления, км;
  • tgϕ1, tgϕ2 – коэффициент мощности;

1. Основы проектирования систем электроснабжения. Маньков В.Д. 2010 г.
2. Справочная книга электрика. Григорьева В.И. 2004 г.

Источник

Расчет падения напряжения в кабеле

ГРЩ2.2. Показания фазных напряжений после первого участка кабельной линии

Как известно, сечение кабеля выбирается не только по его способности выдерживать без перегрева свой максимальный ток. Другой критерий выбора – его длина. От длины зависит такой важный параметр системы электропитания, как падение напряжения. Иначе говоря – потери на кабельной линии.

В бытовой электропроводке эта проблема практически не принимается во внимание, поскольку существенное влияние она оказывает на длинах кабелей от нескольких десятков метров. Хотя, я уже писал на эту тему статью про падение напряжения, но там основная причина потерь заключалась в большом токе.

Читайте также:  Какое напряжение может почувствовать человек

В интернете эта тема раскрыта очень поверхностно, и когда я с ней столкнулся, очень долго разбирался. Вспомнил косинусы с синусами, нашёл свой старый калькулятор)) Пока разбирался, написал эту статью. Как обычно у меня и бывает).

В данной статье приведу расчеты и рекомендации, сделанные мной для крупного складского комплекса, введенного в эксплуатацию год назад.

Зачем нужен расчет потерь напряжения в кабеле

Предыстория такова. Проектировщикам выдали техническое задание на проект электроснабжения, в котором была указана мощность холодильных систем. Пока выполнялся проект и выделялись деньги на его реализацию, было куплено холодильное оборудование с потребляемой мощностью, в 2 раза превышавшей исходную. Кроме того, выяснилось, что реальное расстояние до подстанции будет почти в 2 раза больше…

В общем, дорогущее немецкое холодильное оборудование отказывается работать, все знают, что делать, но никто не хочет за это платить. Прошедшим летом из-за пониженного напряжения (линейное 340-360 В) сгорел компрессор стоимостью более 10 тыс.евро. Терпеть дальше это было нельзя. Меня попросили провести расчеты, мониторинг и измерения на системе питания, и дать рекомендации по решению проблемы.

Поскольку писал я этот отчет от лица фирмы, имеющей лицензию на энергоаудит, то этот документ будет иметь силу в предстоящей судебной тяжбе.

По ходу документа в цитатах буду давать комментарии и уточнения.

Введение

Было проведено обследование качество электроэнергии, поступающей от трансформаторной подстанции (ТП) по первому участку (440 м) до ГРЩ 2.2 и далее по вторым участкам (50 и 40 м) на холодильные установки (Система 12 и Система 14).

Схема структурная данной системы:

Схема кабельных линий от ТП до нагрузки. ДЭС – дизельная электростанция есть, но в данном случае не рассматривается.

Цель обследования – выявить причины значительного падения напряжения на кабельной линии.

В Систему 12 входят следующие потребители:

Наименование Установленная мощность, кВт Макс.расчетный ток, А
Воздухоохладитель 124,6 50,5
Воздухоохладитель 78,3 27,1
Двигатели компрессоров 100 132,7
Двигатели вентиляторов 13,7 29,7
Итого 316,6 240

В Систему 14 входят следующие потребители:

Наименование Установленная мощность, кВт Макс.расчетный ток, А
Воздухоохладитель 234,4 81,2
Воздухоохладитель 193,9 55,7
Воздухоохладитель 15,2 31,3
Двигатели компрессоров 396 525,6
Двигатели вентиляторов 66 144,3
Итого 905,5 838,1

Напряжение питания – 380…415 В.

Значения токов, мощностей и напряжения взяты из паспортных данных потребителей.

Предварительный расчет потерь напряжения в кабеле

По предварительному расчету, при напряжении на выходе ТП 415 В на холостом ходу (при выключенной нагрузке), при максимальной нагрузке допустимо падение 35 В, или 8,43%. В таком случае при максимальной нагрузке напряжение упадет до 380 В, что, согласно паспортным данным потребителей, является допустимым.

ТП содержит 2 трансформатора по 600 кВт, которые планировалось использовать по одному. Но из-за увеличения нагрузки их пришлось включить в параллель.

Согласно Своду правил по проектированию и строительству СП 31-110-2003, а также ГОСТ Р 50571.15-97 с учетом регламентированных отклонений от номинального значения суммарные потери напряжения от шин 0,4 кВ ТП до наиболее удаленной нагрузки в жилых и общественных зданиях не должны превышать 9%. Причем, из них 5% – на участке от ТП до ВРУ, и 4% – на участке от ВРУ до потребителя.

Согласно ГОСТ 29322-2014, номинальное линейное напряжение в трехфазных сетях должно составлять 400 В, а при нормальных условиях оперирования напряжение питания не должно отличаться от номинального напряжения больше чем на +-10%.

Исходя из этого, падение на 8,43% является обоснованным и соответствует Правилам и ГОСТам, принятым в РФ.

Расчет падения напряжения для 1-го участка

В ходе обследования выяснилось следующее. От ТП, расположенной на расстоянии 440 м, электроэнергия поступает в ГРЩ2.2 по кабельной линии, состоящей из четырех параллельно соединенных кабелей АВБбШв 4х240, общим сечением 960 мм 2 .

Внутренности ГРЩ2.2. Сверху – ввод от ТП на вводной контактор-защитный автомат, справа – шины от АВР (резерв – дизель), ниже – выходной автомат, и выходы на Системы.

Максимальный расчетный ток нагрузки, согласно паспортным данным, составляет 240 А для Системы 12 и 838,1 А для Системы 14. Следовательно, максимальный ток кабельной линии составляет 240+838,1=1078,1 А.

Общая установленная мощность, согласно паспортным данным, составляет 316,6 кВт для Системы 12, и 905,5 кВт для Системы 14. Следовательно, общая установленная мощность всей нагрузки составляет 316,6+905,5=1222,1 кВт.

Рассчитаем падение напряжения на кабельной линии 1-го участка от ТП до ГРЩ2.2 по формуле:

ΔU=√3·I(R·cosφ·L+X·sinφ·L)

Исходные данные для расчета:

  • Максимальный ток I = 1078,1 А,
  • Установленная мощность нагрузки 1222,1 кВт,
  • Удельное активное сопротивление одной жилы R = 0,125 Ом/км по данным производителя кабеля.
  • Удельное индуктивное сопротивление одной жилы Х = 0,077 Ом/км по данным производителя кабеля.
  • Принимаем Cosφ = 0,8, тогда sinφ = 0,6
  • Материал жилы кабеля – алюминий,
  • Длина линии L = 0,44 км.

Подставив данные в формулы, получим, что для одного кабеля падение составит 239 В, или 57,75%. Тогда для имеющейся кабельной линии 1-го участка падение напряжения составит 59,8 В, или 14,43%.

Такое падение напряжения только на 1-м участке является недопустимым.

Это – основная формула. Я делал расчеты, используя калькулятор. Проверял полученные данные, используя программу Электрик (подпрограмма “Потери”).

Кроме того, мне здорово помог Игорь Кривулец (220blog.ru), за что ему большое спасибо! конце статьи будет видео на тему падения напряжения.

Читайте также:  Как меняется напряжение от расстояния

На всякий случай таблица активных и индуктивных сопротивлений алюминиевых и медных кабелей разного сечения:

Таблица активных и индуктивных сопротивлений алюминиевых и медных кабелей разного сечения

Результат обследования 2-го участка (Система 12)

После щита ГРЩ2.2 к нагрузке идёт второй участок кабельной линии на Систему 12, состоящей из одного кабеля АВВГ-нг-LS 5×185, длиной 50 м.

  • Максимальный ток 240 А,
  • Установленная мощность нагрузки 316,6 кВт,
  • Удельное активное сопротивление одной жилы R = 0,164 Ом/км по данным производителя кабеля.
  • Удельное индуктивное сопротивление одной жилы Х = 0,077 Ом/км по данным производителя кабеля.
  • Материал жилы кабеля – алюминий,
  • Длина линии L = 0,05 км.

Для имеющейся кабельной линии падение напряжения составит 3,67 В, или 0,88%.

Результат обследования 2-го участка (Система 14)

После щита ГРЩ2.2 к нагрузке идёт второй участок кабельной линии на Систему 14, состоящей из трех параллельно соединенных кабелей АВВГ-нг-LS 5×185 длиной 40 м.

  • Максимальный ток 838,1 А,
  • Установленная мощность нагрузки 905,5 кВт,
  • Удельное активное сопротивление одной жилы R = 0,164 Ом/км по данным производителя кабеля.
  • Удельное индуктивное сопротивление одной жилы Х = 0,077 Ом/км по данным производителя кабеля.
  • Материал жилы кабеля – алюминий,
  • Длина линии L = 0,04 км.

Для одного кабеля потеря напряжения составит 10,2 В, или 2,47%. Для имеющейся кабельной линии 2-го участка Системы 14 падение напряжения составит 3,4 В, или 0,82%.

Рекомендации по модернизации кабельных линий

Для данного максимального тока и длины линии необходимо выбрать другую кабельную линию участка 1, поскольку расчетное падение напряжения для этого участка является недопустимым. Исходя из данных предварительного расчета и данных падения напряжения на 2-х участках, падение напряжения на 1-м участке должно быть не более 7,55%.

Такой уровень потерь обеспечит кабельная линия, состоящая из 8 кабелей АВБбШв 4х240, включенных в параллель. То есть, к имеющимся кабелям (4 шт.) добавить дополнительные (4 шт.).

В результате, потери на кабельной линии участка 1 составят 7,2%, или 29,8 В.

Кабельные линии 2-х участков в модернизации не нуждаются.

Выводы

Для стабильной работы холодильного оборудования, согласно его паспортным данным, требуется напряжение с допустимыми пределами от 380 до 415 В.

Если учесть приводимые рекомендации, то при выходном напряжении ТП 415 В при максимальной нагрузке потери напряжения для Системы 12 будут 7,2+0,88=8,08%, или 33,6 В. В результате при максимальной нагрузке питающее напряжение Системы 12 составит не менее 381,4 В.

Для Системы 14 потери будут 7,2+0,82=8,02%, или 33,2 В. В результате при максимальной нагрузке питающее напряжение Системы 14 составит не менее 381,7 В.

Результаты измерений качества напряжения

Измерения проводились при помощи анализатора качества напряжения HIOKI 3197, который позволяет снимать все параметры напряжения онлайн.

Прибор предназначен для построения графиков различных параметров электропитания в реальном времени. HIOKI 3197 я уже использовал в анализе качества напряжения при проблемах с холодильниками. Если кому нужен такой прибор – обращайтесь!

Измерения проводились в точке подключения 2-го участка Системы 14 в разных режимах работы оборудования. 2-й участок Системы 12 не исследовался, поскольку к нему невозможно было получить доступ, не отключая питания ТП. Но поскольку Система 12 является маломощной по сравнению с Системой 14, для получения общей картины достаточно измерений, результаты которых приведены ниже на графиках.

Результат мониторинга напряжения

Результат мониторинга тока

Пик потребления тока (включение нагрузки на 100% мощности) приходится на время 16:56. При этом фазное напряжение (усредненное по фазам) составляет 212 В (линейное – 367 В), ток 836 А.

Холостой ход трансформатора (нагрузка полностью отключена) приходится на 17:07. При этом фазное напряжение составляет 238 В (линейное – 412 В), ток 0 А.

При проведении измерений Система 12 была отключена.

По результатам проведенных измерений можно сделать выводы, что максимальное суммарное падение напряжения для Системы 14 составляет 45 В, или 11%.

Данные измерения подтверждают правильность сделанных расчетов и рекомендаций.

Фото подключения прибора HIOKI 3197 к кабельной линии в процессе измерений:

Подключение HIOKI 3197 для измерения параметров напряжения в реальном времени

Резервное питание

Резервное питание в ГРЩ 2.2 поступает от ДЭС (дизельной электростанции). Переключение производится через систему АВР (автоматический ввод резерва).

Параметры источника резервного питания:

  • Максимальная мощность ДЭС – 600 кВт,
  • Кабельная линия – 3 кабеля АВБбШв 4х240, включенных в параллель,
  • Длина кабельной линии – 250 м.

Исходя из этих параметров, можно однозначно сделать вывод, что мощностей ДЭС и кабельной линии резервного питания с учетом падения напряжения хватит не более чем на половину максимальных потребностей нагрузки, что совершенно недопустимо.

Поэтому мониторинг качества питания по линии ДЭС проводить не имеет никакого смысла.

Для резервного питания в данном случае рекомендуется применить ДЭС мощностью не менее 1220 кВт. Кабельная линия должна содержать 5 кабелей АВБбШв 4х240, в таком случае падение напряжения до ГРЩ 2.2 будет составлять приемлемое значение 6,5%.

Скачать файл

В заключение – как и обещал, хорошая книжка по расчетом потери напряжения и потерям напряжения в кабеле. Будет очень интересна всем, кого заинтересовала эта статья. Сейчас таких книг уже не пишут.

• Карпов Ф. Ф. Как выбрать сечение проводов и кабелей, 1973 год / Брошюра из Библиотеки электромонтера. Приведены указания и расчеты, необходимые для выбора сечений проводов и кабелей до 1000 В. Полезно для тех, кто интересуется первоисточниками., zip, 1.57 MB, скачан: 4342 раз./

Ещё много книг можно у меня скачать тут.

Источник

Оцените статью
Adblock
detector