Как определить постоянную планка по запирающему напряжению

Как определить постоянную планка по запирающему напряжению

Один из способов измерения постоянной Планка основан на определении максимальной кинетической энергии фотоэлектронов с помощью измерения задерживающего напряжения. В таблице представлены результаты одного из первых таких опытов.

Задерживающее напряжение U, В

Частота света

По результатам данного эксперимента определите постоянную Планка с точностью до первого знака после запятой. В ответе приведите значение, умноженное на 10 34.

Запишем уравнение Эйнштейна для фотоэффекта для обоих значений задерживающего напряжения: Вычтя из второго равенства первое, получим соотношение, из которого уже легко оценить постоянную Планка:

Приведено полное решение, включающее следующие элементы:

I) записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом;

II) описаны все вновь вводимые в решении буквенные обозначения физических величин (за исключением обозначений констант, указанных в варианте КИМ, обозначений, используемых в условии задачи, и стандартных обозначений величин, используемых при написании физических законов);

III) представлены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями);

IV) представлен правильный ответ с указанием единиц измерения искомой величины

Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены преобразования, направленные на решение задачи, но имеется один или несколько из следующих недостатков.

Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют.

В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения и не зачёркнуты.

В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/вычислениях пропущены логически важные шаги.

Источник

Исследовательский проект «Определение постоянной Планка»

Онлайн-конференция

«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»

Свидетельство и скидка на обучение каждому участнику

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа №3»

Научно-исследовательский проект
Фотоэффект. Определение постоянной Планка

Сычков Никита Алексеевич
ученик 10«А» класса МБОУ СОШ №3

Руководитель проекта:
Вольнова Светлана Юрьевна
учитель физики

Список используемой литературы…………………………………………………………..8 стр.

Я давно интересуюсь работами Эйнштейна и как-то столкнулся в литературе с фотоэффектом. Я понял, что используемые мною фоторезисторы и фотоэлементы, работают как раз на этом явлении, и решил, как следует его изучить и найти практическое применение фотоэффекта в технике.

Окончательно я определился с темой проекта после того, как от нашего учителя физики узнал о наличии в кабинете установки для определения постоянной Планка. Эту тему я считаю актуальной, т.к. открытие фотоэффекта имело очень большое значение для более глубокого понимания природы света. И как многие открытия физики дало человеку в руки средства, используя которые можно совершенствовать производство, улучшать условия жизни.

Цель работы: ввести теоретические основы фотоэффекта и его законы; определить опытным путем значение постоянной Планка.

Изучить и проанализировать данные в литературе по теме исследования.

Провести эксперимент по определению постоянной Планка.

Обработать результаты эксперимента, сделать выводы.

Объект исследования: явление фотоэффекта.

Предмет исследования: постоянная Планка.

Изучение литературы по данной теме.

В 1839 году Александр Беккерель наблюдал явление фотоэффекта в электролите.

В 1873 году Виллоби Смит обнаружил, что селен является фотопроводящим.

1873 г. — первые сообщения о зависимости сопротивления селена от освещения.

1875 г. — построение первого селенового фотоэлемента, использующего это свойство.

1876 г. — первый селеновый фотоэлемент с запирающим слоем.

1887 г. – открытие Г. Герцем внешнего фотоэффекта, который установил, что электрический разряд между двумя проводниками происходит значительно сильнее, когда металлические электроды освещаются светом, богатым ультрафиолетом (например, светом от искры другого разрядника).

1888 г. – итальянский уч. Аугусто Риги обнаружил, что проводящая пластинка, освещенная пучком ультрафиолетовых лучей, заряжается положительно; ввел термин фотоэлектрические явления.

1888 г. — А. Г. Столетовым выполнены фундаментальные работы по исследованию фотоэмиссии и сформулированы основные законы внешнего фотоэффекта.

1889 г. — Ф. Ленард и Дж. Дж. Томсон доказали, что при фотоэффекте испускаются электроны.

1889 г. — Эльстер и Гейтель построили первый вакуумный фотоэлемент с фотокатодом из сплава натрия и калия.

1905 г. — А. Эйнштейн объяснил основные закономерности фотоэффекта на основе гипотезы Макса Планка о квантовой природе света, за что в 1921 году он, благодаря номинации шведского физика Карла Вильгельма Озеена, получил Нобелевскую премию.

А. Эйнштейн предположил, что свет излучается и поглощается определенными порциями, причем энергия каждой такой порции определяется формулой E = hν, где h – постоянная Планка. Эйнштейн сделал следующий шаг в развитии квантовых представлений. Он пришел к выводу, что свет имеет прерывистую (дискретную) структуру. Электромагнитная волна состоит из отдельных порций – квантов, впоследствии названных фотонами. При взаимодействии с веществом фотон целиком передает всю свою энергию hν одному электрону. Часть этой энергии электрон может рассеять при столкновениях с атомами вещества. Кроме того, часть энергии электрона затрачивается на преодоление потенциального барьера на границе металл–вакуум. Для этого электрон должен совершить работу выхода A(вых), зависящую от свойств материала катода. Наибольшая кинетическая энергия, которую может иметь вылетевший из катода фотоэлектрон, определяется законом сохранения энергии: =

Эту формулу принято называть уравнением Эйнштейна для фотоэффекта.

С помощью уравнения Эйнштейна можно объяснить все закономерности внешнего фотоэффекта. Из уравнения Эйнштейна следуют линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта. Общее число фотоэлектронов, покидающих за 1 с поверхность катода, должно быть пропорционально числу фотонов, падающих за то же время на поверхность. Из этого следует, что ток насыщения должен быть прямо пропорционален интенсивности светового потока.

Как следует из уравнения Эйнштейна, тангенс угла наклона прямой, выражающей зависимость запирающего потенциала Uз от частоты ν равен отношению постоянной Планка h к заряду электрона e: (смотрите приложение №1)

Это позволяет экспериментально определить значение постоянной Планка. Такие измерения были выполнены в 1914 г. Р. Милликеном и дали хорошее согласие со значением, найденным Планком. Эти измерения позволили также определить работу выхода A:

где c – скорость света, λ(кр) – длина волны, соответствующая красной границе фотоэффекта. У большинства металлов работа выхода составляет несколько электрон-вольт (1 эВ = 1,602·10–19 Дж). В квантовой физике электрон-вольт часто используется в качестве энергетической единицы измерения

Среди металлов наименьшей работой выхода обладают щелочные элементы. Например, у натрия A = 1,9 эВ, что соответствует красной границе фотоэффекта λкр ≈ 680 нм. Поэтому соединения щелочных металлов используют для создания катодов в фотоэлементах, предназначенных для регистрации видимого света.

Итак, законы фотоэффекта свидетельствуют, что свет при испускании и поглощении ведет себя подобно потоку частиц, получивших название фотонов или световых квантов.

Фотоэффект – это вырывание электронов из вещества под действием света. Если явление сопровождается выходом электронов за пределы вещества, фотоэффект называют внешним, если не сопровождается – внутренним. Во втором случае он проявляется в изменении концентрации электронов и других носителей зарядов в различных частях вещества, изменяя его электрические и оптические свойства.

1. Число фотоэлектронов, вырываемых за 1 с с поверхности катода, пропорционально интенсивности света, падающего на это вещество.

2. Кинетическая энергия фотоэлектронов не зависит от интенсивности падающего света, а зависит линейно от его частоты.

3. Красная граница фотоэффекта зависит только от рода вещества катода.

4. Фотоэффект практически безынерционен, так как с момента облучения металла светом до вылета электронов проходит время с.

5. Для каждого вещества существует красная граница фотоэффекта, т.е. минимальная частота или максимальная длина волны, при которой еще возможен внешний фотоэффект.

Все законы были установлены опытным путем.

Внешний фотоэффект нашёл применение в технике ещё в первой половине XX века. Это, конечно же, голос прежде немого кинематографа. Фотоэлемент позволяет превратить звук, «сфотографированный» на киноплёнке, в слышимый. Свет обычной лампы проходил через звуковую дорожку киноплёнки, изменялся и попадал на фотоэлемент (смотрите приложение №2).

Чем больше света проходило через дорожку, тем громче был звук в динамике. В неживой природе внешний фотоэффект проявляется миллионы лет в планетарных масштабах. Мощное солнечное излучение, воздействуя на атомы и молекулы земной атмосферы, выбивает из них электроны, то есть ионизирует верхние слои атмосферы.

Внутренний фотоэффект в настоящее время в технике используется гораздо чаще внешнего. Например, он превращает свет в электрический ток в фотоэлементах и огромных солнечных батареях космических кораблей. Фотоэффект «работает» и в специальных светочувствительных приборах, таких как, фоторезисторы, фотодиоды, фототранзисторы. Благодаря этому можно считать детали на конвейере или производить автоматическое включение и выключение различных механизмов (маяки, уличное освещение, автоматическое открывание дверей и др.). Также благодаря внутреннему фотоэффекту можно преобразовывать изображение в электрические сигналы и передавать на расстояние (телевидение).

Наиболее крупномасштабное применение фотоэффекта сегодня – это уже построенные солнечные электростанции (смотрите приложение №3), а также проекты строительства новых таких станций мощностью до нескольких сотен мегаватт. По оценкам специалистов, в 2020 году до 20% мировой электроэнергии будет производиться за счет фотоэлектрического преобразования солнечной энергии на Земле и в космосе.

Источник

Постоянная Планка

Постоя́нная Пла́нка , обозначаемая как h , является физической постоянной, используемой для описания величины кванта действия в квантовой механике. Данная постоянная впервые появилась в работах М. Планка, посвящённых тепловому излучению, и потому названа в его честь. Она присутствует как коэффициент между энергией E и частотой ν фотона в формуле Планка:

Скорость света c связана с частотой ν и длиной волны λ соотношением:

С учётом этого соотношение Планка записывается так:

Часто применяется величина

Дж•c,

эрг•c,

эВ•c,

называемая редуцированной (или рационализированной) постоянной Планка или постоянной Дирака .

Постоянную Дирака удобно использовать тогда, когда применяется угловая частота ω , измеряемая в радианах за секунду, вместо обычной частоты ν , измеряемой количеством циклов за секунду. Так как ω = 2π ν , то справедлива формула:

Согласно гипотезе Планка, впоследствии подтверждённой, энергия атомных состояний является квантованной. Это приводит к тому, что нагретое вещество излучает электромагнитные кванты или фотоны определённых частот, спектр которых зависит от химического состава вещества.

В Юникоде постоянная Планка занимает позицию U+210E (h), а постоянная Дирака U+210F (ħ).

Содержание

  • 1 Величина
  • 2 Происхождение постоянной Планка
    • 2.1 Излучение чёрного тела
    • 2.2 Фотоэффект
    • 2.3 Структура атома
    • 2.4 Принцип неопределённости
    • 2.5 Спектр тормозного рентгеновского излучения
  • 3 Физические константы, связанные с постоянной Планка
    • 3.1 Масса покоя электрона
    • 3.2 Постоянная Авогадро
    • 3.3 Элементарный заряд
    • 3.4 Магнетон Бора и ядерный магнетон
  • 4 Определение из экспериментов
    • 4.1 Постоянная Джозефсона
    • 4.2 Баланс мощности
    • 4.3 Магнитный резонанс
    • 4.4 Постоянная Фарадея
    • 4.5 Рентгеновская плотность кристалла
  • 5 Постоянная Планка в системе единиц СИ
  • 6 Постоянная Планка в теории бесконечной вложенности материи
  • 7 См. также
  • 8 Ссылки
  • 9 Литература
  • 10 Внешние ссылки
Критерии оценивания выполнения задания Баллы
2

Величина

Постоянная Планка имеет размерность энергии, умноженной на время, как и размерность действия. В международной системе единиц СИ постоянная Планка выражается в единицах Дж•с. Такую же размерность имеет произведение импульса на расстояние в виде Н•м•с, а также момент импульса.

Значение постоянной Планка равно: [1]

Дж•с эВ•с.

Две цифры между скобками обозначают неопределённость в двух последних цифрах значения постоянной Планка (данные обновляются приблизительно каждые 4 года).

Происхождение постоянной Планка

Излучение чёрного тела

Основная статья : Формула Планка

Интенсивность света, излучаемая чёрным телом в зависимости от длины волны. Кривые обозначены разным цветом и построены для разных температур тела. Планк был первым, кто объяснил форму этих кривых

В конце 19 века Планк исследовал проблему излучения абсолютно чёрного тела, которую за 40 лет до этого сформулировал Кирхгоф. Нагретые тела светятся тем сильнее, чем выше их температура и больше внутренняя тепловая энергия. Теплота распределяется между всеми атомами тела, приводя их в движение друг относительно друга и к возбуждению электронов в атомах. При переходе электронов к устойчивым состояниям излучаются фотоны, которые могут снова поглощаться атомами. При каждой температуре возможно состояние равновесия между излучением и веществом, при этом доля энергии излучения в общей энергии системы зависит от температуры. В состоянии равновесия с излучением абсолютно чёрное тело не только поглощает всё падающее на него излучение, но и излучает само то же самое количество энергии, по определённому закону распределения энергии по частотам. Закон, связывающий температуру тела с мощностью общей излучаемой энергии с единицы поверхности тела, носит название закон Стефана-Больцмана и был установлен в 1879–1884 гг.

При нагревании увеличивается не только общее количество излучаемой энергии, но меняется и состав излучения. Это видно по тому, что меняется цвет нагреваемых тел. Согласно закону смещения Вина 1893 г., основанному на принципе адиабатического инварианта, для каждой температуры можно вычислить длину волны излучения, при которой тело светится наиболее сильно. Вин сделал достаточно точную оценку формы энергетического спектра чёрного тела при высоких частотах, но не смог объяснить ни форму спектра, ни его поведение при низких частотах.

Планк предположил, что поведение света подобно движению набора множества одинаковых гармонических осцилляторов. Он изучал изменение энтропии этих осцилляторов в зависимости от температуры, пытаясь обосновать закон Вина, и нашёл подходящую математическую функцию для спектра чёрного тела. [2]

Однако вскоре Планк понял, что кроме его решения возможны и другие, приводящие к другим значениям энтропии осцилляторов. В результате он был вынужден использовать вместо феноменологического подхода отвергаемую им ранее статистическую физику, [2] что он описывал как «акт отчаяния … Я был готов пожертвовать любыми моими предыдущими убеждениями в физике.» [3] Одним из новых принятых Планком условий было:

интерпретировать U N ( энергия колебаний N осцилляторов ) не как непрерывную неограниченно делимую величину, а как дискретную величину, состоящую из суммы ограниченных равных частей. Обозначим каждую такую часть в виде элемента энергии через ε; [2]

С этим новым условием Планк фактически вводил квантованность энергии осцилляторов, говоря, что это «чисто формальное предположение … на самом деле я не думал об этом глубоко…», [4] однако это привело к настоящей революции в физике. Применение нового подхода к закону смещения Вина показало, что «элемент энергии» должен быть пропорционален частоте осциллятора. Это было первой версией того, что сейчас называется «формула Планка»:

Планку удалось вычислить значение h из экспериментальных данных по излучению чёрного тела: его результат был 6,55 • 10 −34 Дж•с, с точностью 1,2 % от принятого сейчас значения. [2] Он также смог впервые определить постоянную Больцмана k B из тех же данных и своей теории. [5]

До теории Планка предполагалось, что энергия тела может быть любой, являясь непрерывной функцией. Это эквивалентно тому, что элемент энергии ε (разность между дозволенными уровнями энергии) равен нулю, следовательно должна быть равна нулю и h . Исходя из этого следует понимать утверждения о том, что «постоянная Планка равна нулю в классической физике» или что «классическая физика является пределом квантовой механики при устремлении постоянной Планка к нулю». Вследствие малости постоянной Планка она почти не проявляется в обычном человеческом опыте и до работ Планка была незаметна.

Проблема чёрного тела была пересмотрена в 1905 г., когда Рэлей и Джинс с одной стороны, и Эйнштейн с другой стороны, независимо доказали, что классическая электродинамика не может обосновать наблюдаемый спектр излучения. Это привело к так называемой «ультрафиолетовой катастрофе», обозначенной таким образом Эренфестом в 1911 г. Усилия теоретиков (вместе с работой Эйнштейна по фотоэффекту) привели к признанию того, что постулат Планка о квантовании уровней энергии является не простым математическим формализмом, а важным элементом представлений о физической реальности. Первый Сольвеевский конгресс в 1911 г. был посвящён «теории радиации и квантов». [6] Макс Планк в 1918 г. получил Нобелевскую премию по физике «за признание заслуг в развитии физики и открытие кванта энергии».

Фотоэффект

Основная статья : Фотоэффект

Фотоэффект заключается в эмиссии электронов (называемых фотоэлектронами) с поверхности при освещении её светом. Впервые он наблюдался Беккерелем в 1839 г., хотя обычно упоминается Генрих Герц, [7] который опубликовал в 1887 г. обширное исследование на эту тему. Столетов в 1888–1890 гг. сделал несколько открытий в области фотоэффекта, в том числе вывел первый закон внешнего фотоэффекта. Другое важное исследование фотоэффекта опубликовал Ленард в 1902 г. [8] Хотя Эйнштейн не проводил сам экспериментов по фотоэффекту, но его работа 1905 г. [9] рассматривала эффект на основе световых квантов. Это принесло Эйнштейну нобелевскую премию в 1921 г. [7] , когда его предсказания были подтверждены экспериментальной работой Милликена. [10] В это время теория фотоэффекта Эйнштейна рассматривалась как более значительная, чем его теория относительности.

До работы Эйнштейна каждое электромагнитное излучение рассматривалось в виде набора волн, обладающих своей «частотой» и «длиной волны». Энергия, переносимая волной за единицу времени, называется интенсивностью. Аналогичные параметры имеют и другие виды волн, например звуковая волна или волна на воде. Однако перенос энергии, связанной с фотоэффектом, не согласуется с волновой картиной света.

Кинетическая энергия фотоэлектронов, появляющихся в фотоэффекте, может быть измерена. Оказывается, что она не зависит от интенсивности света, [8] но зависит линейно от частоты. [10] При этом увеличение интенсивности света приводит не к увеличению кинетической энергии фотоэлектронов, а к увеличению их количества. [8] Если же частота слишком мала и кинетическая энергия фотоэлектронов порядка нуля, то фотоэффект исчезает, несмотря на значительную интенсивность света. [10]

Согласно объяснению Эйнштейна, в данных наблюдениях проявляется квантовая природа света; энергия света переносится малыми «пакетами» или квантами, а не в виде непрерывной волны. Величина этих «пакетов» энергии, которые позже назвали фотонами, была той же самой, что и у «элементов энергии» Планка. Это привело к современному виду формулы Планка для энергии фотона:

Постулат Эйнштейна был доказан экспериментально: постоянная пропорциональности между частотой света ν и энергией фотона E оказалась равной постоянной Планка h . [10]

Структура атома

Основная статья : Постулаты Бора

Источник

Читайте также:  Емкостно омический делитель напряжения
Оцените статью
Adblock
detector