Как посчитать ток по высокой стороне трансформатора

Как рассчитать ток плавкой вставки для трансформатора по стороне ВН

В электрических сетях нередко возникают аварийные ситуации, которые могут вывести из строя дорогостоящее оборудование, одним из элементов которого является трансформатор. Для того чтобы защитить трансформатор от повреждения необходимо установить защиту от сверхтоков.

Высоковольтный предохранитель – один из вариантов защиты силового трансформатора от повреждения. Он осуществляет разрыв электрической цепи (разрушение плавкой вставки) при превышении тока выше допустимого значения (номинала предохранителя).

Высоковольтный предохранитель защитит обмотку трансформатора только в том случае, если он был правильно выбран по току. Рассмотрим, как рассчитать ток для плавкой вставки для трансформатора по стороне высокого напряжения (ВН).

При выборе предохранителя в первую очередь нужно учитывать класс напряжения: номинальное напряжение предохранителя должно быть равно классу напряжения электрической сети. Установка высоковольтного предохранителя на номинальное напряжение ниже напряжения питающей сети приведет к пробою или перекрытию изоляции, что в свою очередь приведет к междуфазному короткому замыканию. Также запрещается устанавливать предохранители на напряжение ниже номинального для предохранителя – это может привести к возникновению перенапряжений при коротком замыкании.

Выбор плавкой вставки по номинальному току отключения

Номинальный ток отключения (срабатывания) предохранителя должен быть не меньше максимального значения тока короткого замыкания для точки электрической сети, где будет установлен предохранитель. Для силового трансформатора это ток трехфазного замыкания на выводах обмотки высокого напряжения – места установки плавких предохранителей.

При расчете тока короткого замыкания учитывается наиболее тяжелый режим, с минимальным сопротивлением до места предполагаемого повреждения.

Токи короткого замыкания рассчитывают индивидуально с учетом всей схемы питающей электросети.

Предохранители для защиты трансформатора по стороне ВН выпускают на номинальный ток отключения (предельно отключаемый ток) в диапазоне 2,5-40 кА.

Если нет данных о величине токов короткого замыкания на участке электросети, то рекомендуется выбирать максимальное значение номинального тока отключения для плавкой вставки.

Выбор номинального тока плавкой вставки предохранителя

Высоковольтный предохранитель защищает обмотку высокого напряжения силового трансформатора не только от коротких замыканий, но и от перегрузки, поэтому при выборе плавкой вставки необходимо учитывать и номинальный рабочий ток.

При выборе номинального тока плавкой вставки нужно учитывать несколько факторов. Во-первых, силовой трансформатор в процессе работы может подвергаться кратковременным перегрузкам.

Во-вторых, при включении трансформатора возникают броски тока намагничивания, которые превышают номинальный ток первичной обмотки.

Также нужно обеспечить селективность работы с защитой, установленной на стороне низкого напряжения (НН) и на отходящих линиях потребителей. То есть в первую очередь должны срабатывать автоматические выключатели (предохранители) на стороне низкого напряжения отходящих линий, которые идут непосредственно на нагрузку к потребителям.

Если эта защита по той или иной причине не срабатывает, то должен сработать автомат (предохранитель) ввода стороны НН силового трансформатора. Предохранители на стороне ВН в данном случае — это резервирующая защита, которая должна срабатывать в случае перегрузки обмотки низкого напряжения и отказе защит со стороны НН.

Исходя из вышеперечисленных требований, плавкая вставка выбирается по двухкратному номинальному току обмотки высокого напряжения.

Таким образом, высоковольтные предохранители, установленные на стороне ВН, защищают от повреждений участок электрической цепи до ввода трансформатора, а также от внутренних повреждений самого силового трансформатора. А предохранители (автоматические выключатели) со стороны НН силового трансформатора защищают сам трансформатор от перегрузок выше допустимого предела, а также от коротких замыканий в сети низкого напряжения.

Номинальный ток обмоток силового трансформатора указывается в его паспортных данных.

Как рассчитать ток для плавкой вставки, если известна только номинальная мощность силового трансформатора?

Если известен тип трансформатора, то самый простой способ — найти ток, воспользовавшись справочными данными по силовым трансформаторам одного из производителей, так как все трансформаторы выпускают, как правило, по стандартному ряду номинальных мощностей и соответственно со схожими характеристиками.

Либо можно воспользоваться нижеприведенной таблицей рекомендуемых значений номинальных токов плавких вставок предохранителей для трехфазных силовых трансформаторов 6/0,4 и 10/0,4 кВ:

Предохранители для защиты трансформатора напряжения по стороне ВН

Трансформаторы напряжения 110 кВ и выше защищают только по стороне низкого напряжения автоматами или предохранителями. Для трансформаторов напряжения 6, 10 и 35 кВ расчет тока для плавкой вставки не производится.

Предохранитель для защиты трансформатора напряжения по стороне ВН выбирается только по классу напряжения. Для каждого класса напряжения выпускают специальные предохранители типа ПКН (ПН) – 6, 10, 35 (в зависимости от класса напряжения), они применяются исключительно для защиты трансформаторов напряжения.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Читайте также:  Трансформатор tam k 1118

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Силовой трансформатор: формулы для определения мощности, тока, uk%

Силовой трансформатор представляет собой сложную систему, которая состоит из большого числа других сложных систем. И для описания трансформатора придумали определенные параметры, которые разнятся от машины к машине и служат для классификации и упорядочивания.

Разберем основные параметры, которые могут пригодиться при расчетах, связанных с силовыми трансформаторами. Данные параметры должны быть указаны в технических условиях или стандартах на тип или группу трансформаторов (требование ГОСТ 11677-85). Сами определения этих параметров приведены в ГОСТ 16110.

Номинальная мощность трансформатора — указанное на паспортной табличке трансформатора значение полной мощности на основном ответвлении, которое гарантируется производителем при установке в номинальном месте, охлаждающей среды и при работе при номинальной частоте и напряжении обмотки.

Числовое значение мощности в кВА изначально выбирается из ряда по ГОСТ 9680-77. На изображении ниже приведен этот ряд.

Значения в скобках принимаются для экспортных или специальных трансформаторов.

Если по своим характеристикам оборудование может работать при разных значениях мощностей (например, при различных системах охлаждения), то за номинальное значение мощности принимается наибольшее из них.

К силовым трансформаторам относятся:

  • трехфазные и многофазные мощностью более 6,3 кВА
  • однофазные — более 5 кВА

Номинальное напряжение обмотки — напряжение между зажимами трансформатора, указанное на паспортной табличке, на холостом ходу.

Номинальный ток обмотки — ток, определяемый мощностью, напряжением обмотки и множителем, учитывающим число фаз. То есть если трансформатор двухобмоточный, то мы будем иметь ток с низкой стороны и ток с высокой стороны. Или же ток, приведенный к низкой или высокой стороне.

Напряжение короткого замыкания — дадим два определения.

Приведенное к расчетной температуре линейное напряжение, которое нужно подвести при номинальной частоте к линейным зажимам одной из обмоток пары, чтобы в этой обмотке установился ток, соответствующий меньшей из номинальных мощностей обмоток пары при замкнутой накоротко второй обмотке пары и остальных основных обмотках, не замкнутых на внешние цепи

Напряжение короткого замыкания uk — это напряжение, при подведении которого к одной из обмоток трансформатора при замкнутой накоротко другой обмотке в ней проходит ток, равный номинальному

Источник — Электрооборудование станций и подстанций

Определились с основными терминами, далее разберем как определить мощность, ток и сопротивление трансформатора на примере:

ТМ-750/10 с номинальными напряжениями 6 кВ и 0,4 кВ. Ток с высокой стороны будет 72,2 А, напряжение короткого замыкания — 5,4%. Определим ток из формулы определения полной мощности:

Так что, если недобрали данных для расчетов, всегда можно досчитать. Но это рассмотрен случай двухобмоточного Т.

Чтобы определить сопротивление двухобмоточного трансформатора в именованных единицах (Ом), например, для расчета тока короткого замыкания, воспользуемся следующими выражениями:

  • x — искомое сопротивление в именованных единицах, Ом
  • xT% — относительное сопротивление, определяемое через uk% (в случае двухобмоточных эти числа равны), отн.ед.
  • Uб — базисное напряжение, относительно которого мы ведем наш расчет (более подробно будет рассмотрено в статье про расчет токов КЗ), кВ
  • Sном — номинальная мощность, МВА

В формуле выше важно следить за единицами измерения, не спутать вольты и киловольты, мегавольтамперы с киловольтамперами. Будьте начеку.

Формулы для расчета относительных сопротивлений обмоток (xT%)

В двухобмоточном трансформаторе все просто и uk=xt.

Трехобмоточный и автотрансформаторы

В данном случае схема эквивалентируется в три сопротивления (по секрету, одно из них частенько бывает равно нулю, что упрощает дальнейшее сворачивание).

Трехфазный у которого НН расщепленная

Частенько в схемах ТЭЦ встречаются данные трансформаторы с двумя ногами.

В данном случае всё зависит от исходных данных. Если Uk дано только для в-н, то считаем по верхней формуле, если для в-н и н1-н2, то нижней. Схема замещения представляет собой звезду.

Группа двухобмоточных однофазных трансформаторов с обмоткой низшего напряжения, разделенной на две или на три ветви

Хоть внешне и похоже на описанные выше, и схемы замещения подобны, однако, формулы будут немного разные.

Источник

Как посчитать ток по высокой стороне трансформатора

В соответствии с «Правилами устройства электро­установок» все силовые трансформаторы должны иметь защиту от коротких замыканий и ненормаль­ных режимов [1]. Для выбора видов защиты и ра­счета их характеристик срабатывания необходимо прежде всего точно знать тип и параметры защищае­мого трансформатора.

Самые важные параметры трансформатора отра­жены в его условном обозначении, которое имеется и в паспорте, и на паспортной табличке, прикрепленной к трансформатору на видном месте. В соответствии с ГОСТ 11677—85 «Трансформаторы силовые» принята единая структурная схема условного обозначения трансформаторов. Буквы в начале обозначают одно­фазный (О) или трехфазный (Т) трансформатор, ука­зывают вид изолирующей и охлаждающей среды (на­пример, буква М соответствует масляному трансфор­матору с естественной циркуляцией воздуха и масла, буква С — сухому трансформатору), а также испол­нение трансформатора и вид переключения ответвле­ний: буква 3 — защитное исполнение, Г — герметич­ное, Н — возможность регулирования напряжения под нагрузкой.

Читайте также:  Коэффициент заполнения окна трансформатора что это такое

После буквенной части обозначения через тире указывается номинальная мощность трансформатора в киловольт-амперах (кВ-А), затем через дробь — класс напряжения стороны высшего напряжения (ВН) в киловольтах (кВ) и далее через тире — кли­матическое исполнение и категория размещения обору­дования по ГОСТ 15150—69. Согласно этому стандар­ту буквой У обозначают исполнение для умеренного климата, ХЛ — холодного, Т — тропического. Ка­тегории размещения обозначаются цифрами: 1—для работы на открытом воздухе, 2 — для работы в поме­щениях, где температура и влажность такие же, как на открытом воздухе, 3 — для закрытых помещений с естественной вентиляцией, 4 — для работы в поме­щениях с искусственным регулированием климата, 5 — для работы в помещениях с повышенной влаж­ностью.

Например, условное обозначение трансформатора трехфазного масляного с охлаждением при естествен­ной циркуляции воздуха и масла, двухобмоточного, мощностью 250 кВ-А, класса напряжения 10 кВ, ис­полнения У категории 3 (для умеренного климата и закрытых помещений) имеет следующий вид:

Трансформатор трехфазный сухой с естественным воздушным охлаждением при защищенном испол­нении, двухобмоточный, мощностью 400 кВ-А, класса напряжения 10 кВ, исполнения У категории 3 имеет такое условное обозначение:

В паспортной табличке указываются и другие па­раметры трансформатора, необходимые для выбора его защиты:

номинальные напряжения трансформатора (сторон ВН и НН для двухобмоточных трансформаторов);

номинальные токи обмоток ВН и НН;

условное обозначение схемы и группы соединения обмоток;

напряжение короткого замыкания ик (в процен­тах) на основном ответвлении обмотки ВН (для трехобмоточных трансформаторов указывают напряжение короткого замыкания всех пар обмоток).

Номинальные напряжения трансформатора. Транс­форматоры с высшим номинальным напряжением 10 кВ, которым посвящена эта книга, выпускаются с номинальным напряжением стороны низшего напря­жения, равным 0,4 или 0,69 кВ, — для питания элек­троприемников, а также 3,15 или 6,3 кВ, или 10,5 кВ — для связи питающих электрических сетей разных на­пряжений, а иногда и для питания крупных электро­двигателей напряжением выше 1000 В. Например, на подстанции 110/10кВ электродвигатели напряжением 6 кВ могут работать только через трансформаторы 10/6,3 кВ. Однако большинство трансформаторов 10 кВ выпускается с низшим напряжением 0,4 кВ для питания электроприемников напряжением 380 и 220 В.

В обмотке ВН трансформаторов 10 кВ, как масля­ных, так и сухих, предусматривается возможность из­менения напряжения ВН в диапазоне ±5 % номи­нального ступенями по 2,5%. Изменяют напряжения переключением ответвлений обмотки ВН, что произво­дится обязательно при отключении всех обмоток трансформатора от сети. Вид, диапазон и число сту­пеней регулирования напряжения на стороне ВН условно обозначаются буквами и цифрами: ПБВ ± ±2X2,5 %, где ПБВ означает переключение без воз­буждения (в отличие от РПН — регулирования под напряжением, которое выполняется на трансформато­рах более высоких классов напряжения, начиная с 35 кВ).

Номинальные значения мощности и тока. Номи­нальные мощности трансформаторов должны соответ­ствовать ГОСТ 9680—77. Трансформаторы масляные 10 кВ для питания электроприёмников выпускаются с номинальной мощностью до 2,5 MB -А, а для связи между электросетями разных напряжений — до 6,3 МВ-А: например, 25, 40, 63, 100, 160, 250, 400, 630 кВ-А, а также 1; 1,6 и 2,5 МВ-А. Трансформато­ры сухие (ТСЗ) выпускаются с номинальной мощ­ностью 160, 250, 400, 630 кВ-А, а также 1 и 1,6 МВ-А.

Мощность (в вольт-амперах) трехфазного транс­форматора при равномерной нагрузке фаз определя­ется выражением

где U номинальное междуфазное напряжение, В; / — ток в фазе, А.

Из выражения (1) по известным из паспортных данных номинальным значениям мощности и напря­жений сторон ВН и НН могут быть определены зна­чения номинальных токов (в амперах) обмоток ВН и НН трансформатора

где S ном. указывается в киловольт-амперах (кВ-А), а U ном — в киловольтах (кВ),

Например, для трансформатора мощностью 400 кВ-А с напряжением стороны ВН, равным 10 кВ, и стороны НН, равным 0,4 кВ, номинальные токи об­моток:

Как правило, во время работы трансформаторы не должны перегружаться, т. е. значения рабочих токов в обмотках трансформатора не должны превышать поминальные. Однако допускаются в определенных пределах кратковременные и длительные перегрузки (§ 2).

Схемы и группы соединения обмоток. Трансфор­маторы 10 кВ выпускаются со следующими схемами и группами соединения обмоток:

звезда — звезда с выведенной нейтралью Y / Y -0; треугольник — звезда с выведенной нейтралью ∆/ Y -11; звезда с выведенной нейтралью — треу­гольник Y /∆-11; звезда—зигзаг Y / Y

Трансформаторы 10/0,4 кВ со схемой соединения обмоток Y / Y -0 подключаются к питающей трехфаз­ной сети 10 кВ, работающей с изолированной ней­тралью, и питают трехфазную четырех проводную сеть с наглухо заземленной нейтралью, в которой номи­нальное напряжение между линейными проводами равно 0,38 кВ, а между каждым линейным и нулевым проводом (нейтралью трансформатора)—0,22 кВ. При симметричной нагрузке всех фаз ток в нулевом проводе (нейтрали) невелик и называется током не­баланса. Значение тока небаланса у трансформаторов Y / Y не должно превышать 0,25 номинального тока обмотки НН во избежание перегрева и повреждения трансформатора (ГОСТ 11677—85). На практике не всегда удается выполнить это условие. По этой и не­которым другим причинам (см. § 4 и 9) трансформа­торы со схемой соединения обмоток Y / Y не должны применяться начиная с мощности 400 кВ-А и более.

Читайте также:  Трансформатор тсзи 4 квт 380 36

Трансформаторы со схемой и группой соединения обмоток ∆/ Y -11 подключаются таким же образом, как и трансформаторы Y / Y -0. Особенность схемы и группы соединения ∆/ Y -11 состоит в том, что между векторами напряжений и токов на сторонах НН и ВН существует фазовый сдвиг на угол 30°, Поэтому трансформаторы ∆/ Y -11 не могут работать параллельно с трансформаторами Y / Y -0, у которых нет фазового сдвига между этими векторами. При ошибочном включении их на параллельную работу фазовый сдвиг на угол 30° между векторами вторичных напряжений этих трансформаторов вызовет уравнительный ток между трансформаторами одинаковой мощности, при­мерно в 5 раз превышающий номинальный ток каж­дого из них.

Благодаря соединению обмотки ВН в треугольник для этих трансформаторов допускается продолжи­тельная несимметрия нагрузки и ток в нейтрали об­мотки НН до 0,75 номинального тока в обмотке НН (ГОСТ 11677—85). Соединение обмотки ВН в тре­угольник обеспечивает также значительно большие значения токов при однофазных КЗ на землю в сети НН, работающей с заземленной нейтралью, чем при питании сети НН через трансформатор с такими же параметрами, но со схемой соединения Y / Y -0. Это способствует падежной работе устройств релейной защиты от однофазных КЗ (§ 3). Поэтому начиная с мощности 400 кВ-А должны применяться трансфор­маторы 10/0,4 кВ со схемой соединения обмоток ∆/ Y -11 (как сухие, так и масляные). Трансформато­ры с этой схемой соединения обмоток могут выпус­каться также с номинальным напряжением обмотки НН, равным 0,69 кВ.

Для связи между сетями разных напряжений и для питания крупных электродвигателей выше 1000 В выпускаются трансформаторы 10/3,15, 10/6,3 и 10/10,5 кВ со схемой и группой соединения обмоток Y /∆-11; некоторые трансформаторы для специального назначения могут иметь схемы соединения Y / Y -0, ∆/∆-0, а также Y /∆-11 (обмотки ВН с выведенной нейтралью применяются в трансформаторах, например для включения дугогасящего реактора в сети 10 кВ с компенсированной нейтралью). Особую группу со­ставляют трансформаторы для собственных нужд электростанций, релейная защита которых в этой книге не рассматривается.

Трансформаторы 10 кВ небольшой мощности для сельских электросетей могут выпускаться с особой схемой соединения обмотки НН, называемой зигзаг. Обмотка ВН при этом соединяется в звезду: Y / Y . Соединение вторичной обмотки понижающего транс­форматора в зигзаг обеспечивает более равномерное распределение несимметричной нагрузки НН между фазами первичной сети ВН. При этом обеспечиваются наиболее благоприятные условия работы трансформа­тора. Для выполнения схемы зигзаг вторичная об­мотка каждой фазы составляется из двух половин, одна из которых расположена на одном стержне магнитопровода, вторая — на другом. Выполнение трансформаторов со схемой соединения обмотки НН в зигзаг обходится дороже, чем со схемой соединения обмотки НН в звезду ( Y / Y ), так как соединение в зигзаг требует большего (на 15%) числа витков об­мотки НН. Это объясняется тем, что ЭДС обмоток, расположенных на разных стержнях, складываются геометрически под углом 120° и их суммарное значе­ние на 15% меньше, чем при алгебраическом сложе­нии ЭДС двух обмоток, расположенных на одном стержне магнитопровода. Чтобы получить ЭДС одного и того же значения при соединении в зигзаг, нужно на 15 % больше витков, чем при соединении обмотки НН в звезду. Из-за большей сложности изготовления и более высокой стоимости трансформаторы звезда — зигзаг применяются редко.

Напряжение короткого замыкания. Этот важней­ший параметр трансформатора необходим для расче­тов токов КЗ на выводах вторичной обмотки НН трансформатора и в питаемой сети НН. Напряжение короткого замыкания соответствует значению между­фазного напряжения, которое надо приложить к вы­водам обмотки ВН трансформатора для того, чтобы при трехфазном замыкании на выводах НН через трансформатор прошел ток КЗ, равный его номиналь­ному значению. Напряжение короткого замыкания обозначается U k и выражается в процентах номиналь­ного значения напряжения обмотки ВН. Если, напри­мер, U k = 5 %, это означает, что к обмотке ВН транс­форматора 10 кВ при закороченной обмотке НН надо приложить напряжение 0,5 кВ, чтобы ток трансфор­матора был равен номинальному.

По значению напряжения короткого замыкания, как следует из определения этого параметра, можно вычислить максимальное значение тока при трехфаз­ном КЗ на стороне НН трансформатора, причем как без учета сопротивления питающей энергосистемы до шин 10 кВ, где включен трансформатор, так и с уче­том этого сопротивления. По значению U k вычисля­ется и полное сопротивление трансформатора Z тр (§ 3). Значения U k приводятся в стандартах, а также в паспортах и на паспортных табличках каждого трансформатора (по результатам заводских испыта­ний). Средние значения U k для масляных трансфор­маторов 10 кВ равны примерно 4,5 % —при мощности до 400 кВ-А, 5,5% — при мощности 630 кВ-А и 1 MB -А и 6,5 % — при мощности более 1 МВ-А. У су­хих трансформаторов мощностью от 160 кВ-А до 1,6 MB -А значения напряжения короткого замыкания равны примерно 5,5 %.

Источник

Оцените статью
Adblock
detector