Как проверить наличие высокого напряжения в телевизоре

Содержание
  1. Ремонт телевизоров.
  2. Таблица 9.2. Расшифровка результатов нагрузочного тестирования
  3. 9.7.2. «Прозвонка» выходного трансформатора строчной развертки и отклоняющих катушек
  4. 9.7.3. Проверка трансформаторов с диодно-каскадным умножителем (ТДКС)
  5. Таблица 9.3. Постоянное напряжение на выходе диодно-каскадного умножителя ТДКСдля различных трансформаторов в зависимости от номинального размаха импульсов на коллекторе выходного транзистора и номинального напряжения на аноде кинескопа.
  6. 9.7.4. Как найти места пробоя или коронного разряда в ТДКС
  7. 9.7.5. Динамическое тестирование кадровых отклоняющих катушек
  8. Как проверить ТДКС в телевизоре
  9. Проверка ТВС на межвитковое и обрыв без генератора.
  10. МЕТОДЫ ПРОВЕРКИ ТРАНСФОРМАТОРОВ.
  11. МЕТОДЫ ПРОВЕРКИ ТРАН СФОРМАТОРОВ
  12. Очень удобный и простой пробник для проверки ТДКС и строчных катушек ОС в телевизорах.

Ремонт телевизоров.

Глава 9. Строчная и кадровая развертки в телевизорах с цифровым управлением (продолжение)

Таблица 9.2. Расшифровка результатов нагрузочного тестирования

Результаты тестирования мА мкс наиболее вероятная причина неисправности
Неправильно присоединены щупы. Обрыв строчного трансформатора. Обрыв цепи питания В+.
Неиспр. Короткое замыкание или утечка в цепи В+.
Норма Обрыв строчного трансформатора. Не присоединен коллекторный щуп. Обрыв предохранителя.
Неиспр. Норма Короткое замыкание или утечка в цепи В+, или во вторичной цепи строчного трансформатора.
Норма Неиспр. Неисправность времязадающих элементов выходного каскада. Короткое замыкание во вторичной цепи строчного трансформатора.
Неиспр. Неиспр. Утечка в цепи питания В+. Короткое замыкание или утечка во вторичной цепи строчного трансформатора. Неисправность времязадающих элементов выходного каскада.

Наиболее вероятной причиной короткого замыкания в цепи напряжения +В является пробой выходного строчного транзистора.Отсоедините выходной строчный транзистор от шасси и проверьте, каков будет потребляемый ток при выполнении нагрузочного тестирования. Если после отсоединения транзистора ток упадет до значения 10 мА или меньше, можете быть уверены, что выходной транзистор закорочен. Если же короткое замыкание не исчезло после отсоединения выходного транзистора, продолжайте отсоединять один за другим все возможные элементы, неисправность которых могла бы вызвать короткое замыкание рис. 9.20, пока дефектная деталь не будет найдена.

Внимание! В исправном состоянии ни выходной строчный транзистор, ни демпферный диод не влияют на проведение нагрузочного тестирования, поэтому начинать тестирование можно и без отсоединения этих компонентов.

Рис. 9.20. Возможные пути утечки постоянного тока

Кроме короткого замыкания в нагрузке тестирование может показать повышенное потребление тока по шине напряжения В+ (от 80 до 200 мА). В этом случае первым делом нужно выяснить, какого рода ток явился причиной перегрузки — переменный или постоянный. Для этого отсоедините тот щуп нагрузочного тестера, который присоединен к коллектору выходного транзистора. При этом выходной каскад прекращает переключение тока, и переменный ток через первичную обмотку строчного трансформатора и через отклоняющую катушку также прекращается. Из потребителей постоянного напряжения питания В+ остаются выходной каскад, предоконечный каскад и, возможно, генератор. Обычно при нагрузочном тестировании эти цепи потребляют не более 10 мА. Если ток намного больше, следует ожидать наличия короткого замыкания или утечки в каком-либо элементе, подсоединенном к шине В+. Если же при отсоединении щупа от коллектора выходного транзистора устанавливается нормальная сила тока, значит, перегрузка была вызвана утечкой переменного тока.

Существует много возможных путей утечки постоянного тока (рис. 9.20). Причиной утечки или короткого замыкания по постоянному току может быть пробой электролитического конденсатора или выпрямительного диода в источнике питания В+, или любого другого элемента, подсоединенного к шине В+. Для того чтобы найти неисправный элемент, произведите нагрузочное тестирование, не присоединяя соответствующий щуп нагрузочного тестера к коллектору выходного транзистора. Затем отсоединяйте подозрительные на утечку элементы один за другим, измеряя при этом потребляемый ток по линии В+. Начните с выходного транзистора строчной развертки и демпферного диода.

Для того чтобы с помощью нагрузочного тестера найти короткие замыкания или утечки во вторичных цепях строчного трансформатора, используйте вольтметр постоянного тока при измерениях выпрямленных вторичных напряжений и осциллограф- при измерениях импульсных напряжений на вторичных обмотках строчного трансформатора. — Помните, что нагрузочный тестер имитирует работу горизонтального выходного каскада телевизора при напряжении питания, вдесятеро меньшем номинального. Следовательно, и все вторичные импульсные и постоянные напряжения будут составлять примерно 1/10 номинальных значений, приведенных в схеме.

Если измеряемое постоянное напряжение или размах импульсного напряжения существенно ниже 1/10 номинального, либо его нет вовсе, значит, в какой-либо вторичной цепи имеется короткозамкнутый элемент. Это может быть закороченный диод, выпрямляющий вторичное напряжение, или электролитический конденсатор фильтра, или, наконец, короткозамкнутый виток в строчном трансформаторе. Неисправные диоды и конденсаторы найти сравнительно просто, а вот для того чтобы удостовериться в наличии короткозамкнутого витка, придется проверить строчный трансформатор методом так называемой «прозвонки» (см. ниже).

9.7.2. «Прозвонка» выходного трансформатора строчной развертки и отклоняющих катушек

«Прозвонка» позволяет выяснить, имеются ли в обмотке отклоняющей катушки или строчника закороченные витки (или виток). При выполнении «прозвонки» параллельно обмотке строчного трансформатора или отклоняющей катушке подключается определенная емкость (обычно 0,01 мкФ); и на эту цепь подаются импульсы от такого же импульсного генератора, который используется для нагрузочного тестирования. Желательно только уменьшить частоту этого генератора до 1-2 кГц, сохранив длительность импульсов около 10 мкс. LC цепь при воздействии импульсов генерирует затухающие через несколько циклов колебания. Скорость затухания зависит от добротности (Q) катушки, причем исправные катушка или трансформатор выдадут много циклов, прежде чем затухнуть.

«Прозвонку» можно выполнять, не выпаивая строчный трансформатор из шасси, а вот отклоняющую систему лучше отсоединить (как правило, сделать это очень просто). С помощью осциллографа можно установить, какое количество циклов приходится на время затухания колебаний до 25% их первоначальной амплитуды. Исправная катушка (с высоким Q) прозвонит 10 и более раз, а катушка с закороченным витком — менее 10 раз.

Читайте также:  Как подобрать стабилизатор напряжения для светодиодной ленты

Из-за одного закороченного витка все остальные обмотки на том же сердечнике «зазвенят» плохо. Поэтому просто- напросто прозвоните первичную обмотку трансформатора. Его первичная обмотка — это та, которая подсоединяется к коллектору транзистора горизонтального выходного каскада и к источнику питания.

Отключите источник питания телевизора, а затем подсоедините щупы импульсного генератора и осциллографа вместе с навесным конденсатором к первичной обмотке строчного трансформатора или к обмотке отклоняющей катушки. Если проверяемый элемент исправен, то на экране осциллографа будет получена картина, подобная той, которая представлена на рис. 9.21.

Если же колебания затухают быстрее, показывая низкую добротность исследуемого контура, отсоединяйте нагрузки вторичных обмоток строчного трансформатора, пока не достигнете «нормы». Заметив, какая из нагрузок уменьшила добротность трансформатора, можно в этой вторичной цепи отыскать, например, закороченный диод или электролитический конденсатор.

Может оказаться, что результаты «прозвонки» остаются плохими даже после того, как отключены все нагрузки, тогда скорее всего имеется закороченный виток. Отделите строчный трансформатор от шасси и еще раз методом «прозвонки» проверьте его.

С помощью «прозвонки» можно также найти закороченные витки в отклоняющей катушке кадровой развертки и в переключающем трансформаторе блока питания.

9.7.3. Проверка трансформаторов с диодно-каскадным умножителем (ТДКС)

Рис. 9.21. Осциллограмма «прозвонки» ТВС

Высоковольтные диоды, создающие анодное и фокусирующее напряжения, смонтированы в ТДКС. Диоды могут быть пробиты (закорочены) или разорваны, или давать утечку, в результате чего анодное и (или) фокусирующее напряжение на кинескопе может быть низким или отсутствовать вовсе. Закороченные или оборванные вторичные обмотки в блоке умножителя могут вызвать такие же симптомы.

Итак, если горизонтальный выходной каскад работает нормально, а анодное и фокусирующее напряжение ЭЛТ низкое или отсутствует вовсе, следует проверить блок умножителя горизонтального выходного каскада.

Подавая на первичную обмотку строчного трансформатора импульсы, аналогичные импульсам горизонтального выходного каскада, можно провести динамическое тестирование ТДКС: проверить, как выпрямляются и умножаются подаваемые импульсы. Неисправный диод, обмотка или сердечник строчного трансформатора приведут к снижению выходного напряжения ТДКС. Динамическое тестирование можно выполнять с помощью того же устройства, что и нагрузочное тестирование. Следует лишь так отрегулировать напряжение питания, подаваемого на первичную обмотку строчного трансформатора, чтобы размах импульсов на стоке ключевого транзистора составлял примерно 25 В. Затем измеряют выходное напряжение на аноде кинескопа относительно аквадага. Значения измеренного напряжения для исправного ТДКС должны соответствовать табл. 9.3.

Таблица 9.3. Постоянное напряжение на выходе диодно-каскадного умножителя ТДКСдля различных трансформаторов в зависимости от номинального размаха импульсов на коллекторе выходного транзистора и номинального напряжения на аноде кинескопа.

Номинальный размах импульсов на Но минальное напряжение на аноде кинескопа, кВ
коллекторе выходного транзистора, В 10 15 20 25 30 35
100 2500 3750 5000 6250 7500 8750
200 1250 1875 2500 3125 3750 4375
300 833 1250 1667 2083 2500 2917
400 625 938 1250 1563 1875 2188
500 500 750 1000 1250 1500 1750
600 417 625 833 1042 1250 1458
700 357 536 714 893 1071 1250
800 313 469 625 781 938 1094
900 278 417 556 694 833 972
1000 250 375 500 625 750 875
1100 227 341 455 568 682 795

Так, например, если в нормально работающей схеме размах импульсов на коллекторе выходного транзистора строчной развертки должно быть 900 В, а высокое напряжение на аноде кинескопа — 25 кВ, то при тестировании ТДКС по указанной выше методике его диодно-каскадный умножитель должен выдавать 694 В.

9.7.4. Как найти места пробоя или коронного разряда в ТДКС

Транзистор тестера заменяет выходной транзистор строчной развертки телевизора. Он точно так же включается и выключается, пропуская ток через первичную обмотку строчного трансформатора и отклоняющую катушку. Включение происходит с помощью вырабатываемого импульсным генератором управляющего сигнала. При использовании этого тестера шасси телевизора выдает почти нормальную развертку, высокое напряжение и другие вторичные напряжения питания, снимаемые с обмоток строчного трансформатора.

Время проводимости транзистора-заменителя также можно изменять от 5 мкс (минимум) до 35 мкс (максимум), регулируя длительность импульсов, подаваемых на его затвор. Меняя время проводимости транзистора-заменителя, можно ограничить и медленно увеличивать амплитуду импульсов на первичной обмотке строчного трансформатора и получающееся высокое напряжение, чтобы найти места пробоев или коронных разрядов в высоковольтных цепях.

Внимание! При проведении такого тестирования необходимо принять меры для того, чтобы высокое напряжение с умножителя не подавалось на анод кинескопа. Для этого высоковольтный кабель отсоединяют от анода кинескопа и тщательно изолируют контактный наконечник, поместив его, например, в стеклянный стакан.

9.7.5. Динамическое тестирование кадровых отклоняющих катушек

В кадровой развертке трудно искать неисправности, и вот почему:
каскады усиления пилообразного тока являются широкополосными и соединены непосредственно (без разделительных конденсаторов), кроме того, параметры линеаризующей обратной связи существенно влияют на формирование отклоняющего тока, и если неисправность видна на осциллограмме, то из-за обратной связи все каскады кажутся неисправными. Эти трудности вынуждают отбраковывать детали одну за другой, пока не останется одна отслоняющая катушка. Зачастую отбраковывают и катушку, не будучи на сто процентов уверенными в ее исправности. Избавиться от этой неуверенности можно, если предварительно проверить отклоняющую катушку методом «прозвонки» (см. п.9.7.2).

Источник

Как проверить ТДКС в телевизоре

Методики проверки строчных трансформаторов

Строчный трансформатор в кинескопных телевизорах (ТДКС или еще как его еще обозначают на схемах FBT) это достаточно ответственный узел: кроме своей непосредственной роли (получение высокого напряжения для кинескопа) он очень часто играет роль и вторичных источников напряжения. Он очень часто используется для получения питающих напряжений для кадровой развертки, с него получают необходимое напряжение для накала кинескопа и видеоусилителей.

Читайте также:  Защита оборудования от скачков напряжения 380в

Кроме этого неисправный ТДКС может может послужить еще и причиной перегорания строчного транзистора. Поэтому на практике довольно часто возникает необходимость проверки ТДКСов с целью локализации неисправности.

И вот несколько способов проверить ТДКС из различных источников:

Проверка ТВС на межвитковое и обрыв без генератора.

М. Г. РЯЗАНОВ.

Если есть подозрение на ТВС и есть осциллограф, то: отрезаем ножку ТВС от питания(+115 В,+160 В и т.д.);
находим на вторичных БП выход В на 10. 30 и подключаем через R-10 Ом к отрезанному выводу ТВС; любуемся осциллограммой:

а) на R=10 Ом. Если межвитковое замыкание — грязно-пушистый «прямоугольник», почти все напряжение садится на нём, если межвиткового нет — то доли вольта;

б) на вторичных обмотках — если где то нет — то обрыв;

в) убираем R=10 Ом, вешаем нагрузку (0,2. 1,0 кОм) на каждую вторичную обмотку ТВС, если картинка на выходе с нагрузкой практически повторяет входную — ТВС жив-здоров; возвращаем все на место.

Александр Омельяненко

Автор считает, что методы проверки импульсных трансформаторов сигналами низкого уровня без выпаивания из схемы недостоверны. Он предлагает два простых метода тестирования трансформаторов в режиме, близком к рабочему. Конечно, требуется их демонтаж, но зато достоверность результатов проверки гарантируется!
Импульсные трансформаторы блоков питания и строчных разверток выходят из строя чаще всего по причине перегрева обмоток. При пробое силовых ключей резко повышается ток в обмотке, что приводит к ее локальному разогреву с последующим нарушением изоляции обмоточного провода. Чаще это происходит в малогабаритных трансформаторах, намотанных тонким проводом, например, в блоках питания современных видеомагнитофонов, видеоплееров и строчных трансформаторах (ТДКС) телевизоров. В результате перегрева обмоточного провода возникают межвитковые замыкания, резко снижающие добротность трансформатора, что нарушает режим работы автогенератора импульсного источника питания (ИИП) или каскада строчной развертки.
Проверка импульсных трансформаторов блоков питания и ТДКС — тема достаточно актуальная, методов обнаружения межвитковых замыканий описано немало. Результаты тестирования импульсных трансформаторов методами измерения резонансной частоты, индуктивности или добротности обмотки недостоверны. Резонансная частота трансформатора, в частности, зависит от числа витков, емкости между слоями обмоток, свойств материала сердечника и высоты зазора. Межвитковые замыкания не устраняют резонанс, а только повышают резонансную частоту и снижают добротность катушки. Форма тестового синусоидального напряжения закороченными обмотками не искажается, а применять прямоугольные импульсы вообще неразумно по причине возникновения импульсов ударного возбуждения. На этом принципе тоже существуют приборы, но они малоэффективны.
Влиять на форму импульса может насыщение сердечника, но в этом случае нужен генератор большой мощности. Видимо, по этим причинам эффективность известных способов очень низка, а результаты проверки малодостоверны.
Ниже предлагаются простые достоверные методы проверки импульсных трансформаторов в режиме, близком к рабочему. В качестве генератора сигнала используется выходной каскад строчной развертки телевизора или его импульсный источник питания (ИИП). Предлагаемые методы позволяют безопасно обнаружить места пробоя изоляции корпуса ТДКС, так называемые «свищи».
Для проверки по первому методу необходим исправный телевизор, строчная развертка которого используется в качестве генератора. Проверяемый ТДКС необходимо демонтировать, и его накальную обмотку подключить к выводам напряжения накала на плате кинескопа, как показано на рис. 1.
Для второго метода в качестве генератора используется исправный ИИП, можно даже от ремонтируемого телевизора. Для проверки ТДКС обмотка, предназначенная для подключения строчного транзистора, подсоединяется ко вторичной обмотке трансформатора ИИП, предназначенной для формирования напряжения 110. 140 В (рис. 2).

Проверяемый ТДКС
Рис. 1. Подключение тестируемого ТДКС через накальную обмотку

В обоих случаях ТДКС оказывается в режиме, близком к рабочему, и критерием его исправности можно считать появление на анодном выводе высокого напряжения, способного «пробить» 2. 3 см воздушного пространства. Для изготовления разрядника можно использовать провод с двумя зажимами типа «крокодил». Один «крокодил» подключается к отрицательному выводу анодной обмотки, а второй вешается на «присоску», где и образуется разрядник. Наличие короткозамкнутых витков легко опре­деляется по перегрузке генератора (строчной развертки или ИИП) и отсутствию разрядов в высоковольтной цепи.
Подозрительные трансформаторы ИИП можно проверять по второму методу, подключая к выходу генератора обмотку, предназначенную для силового ключа. Признаком наличия в тестируемом трансформаторе короткозамкнутых витков служит перегрузка ИИП, срыв генерации и срабатывание защиты.
Напоследок напоминание : работая с высокими напряжениями, помните о правилах техники безопасности!


«Ремонт электронной техники»№1,2003

МЕТОДЫ ПРОВЕРКИ ТРАНСФОРМАТОРОВ.

Александр Столовых

В настоящей статье автор знакомит читателей с несколькими способами проверки импульсных, разделительных и строчных трансформаторов. В статье приводится способ усовершенствования осциллографов С1-94, С1-112 и им подобных для более удобной диагностики трансформаторов.
При ремонте телевизоров, видеомагнитофонов и другой электронной техники очень часто возникает необходимость проверки трансформаторов.
Существует множество методов, позволяющих с определенной вероятностью отбраковать неисправные трансформаторы. В этой статье рассмотрены способы проверки трансформаторов, импульсных блоков питания, разделительных трансформаторов строчной развертки телевизоров и мониторов, а также трансформаторов строчной развертки (ТДКС).

СПОСОБ 1
Для проверки потребуется звуковой генератор с частотным диапазоном 20. 100 кГц и осциллограф. На первичную обмотку проверяемого трансформатора через конденсатор емкостью 0,1 . 1 мкФ подают синусоидальный сигнал амплитудой 5. 10 В. На вторичной обмотке наблюдают сигнал с помощью осциллографа. Если на каком-либо участке частотного диапазона удается получить неискаженную синусоиду, можно сделать вывод об исправности трансформатора. Если синусоидальный сигнал искажен, трансформатор неисправен.
Схема подключения показана на рис. 1, а форма наблюдаемых сигналов — на рис. 2, соответственно.
СПОСОБ 2
Для проверки трансформатора параллельно первичной обмотке подключаем конденсатор ёмкостью 0,01. 1 мкФ и подаем на обмотку сигнал амплитудой 5 10 В с генератора сигналов звуковой частоты. Меняя частоту генератора, пытаемся вызвать резонанс в получившемся параллельном колебательном контуре, контролируя амплитуду сигнала с помощью осциллографа. Если закоротить вторичную обмотку исправного трансформатора, колебания в контуре исчезнут. Из это­го следует, что короткозамкнутые витки срывают резонанс в контуре. Следовательно, если в проверяемом трансформаторе есть короткозамкнутые витки, мы не сможем добиться резонанса ни на какой частоте.
Схема подключения показана на рис. 3.
СПОСОБ 3
Принцип проверки трансформатора тот же, только вместо параллельного используется последовательный контур. Если в трансформаторе есть короткозамкнутые витки, при частоте резонанса происходит резкий срыв колебаний, и достичь резонанса будет невозможно.
Схема подключения показана на рис 4.
СПОСОБ 4
Первые три способа больше подходят для проверки трансформаторов питания и разделительных трансформаторов, а оценить исправность трансформаторов ТДКС можно только приблизительно.
Для проверки строчных трансформаторов можно воспользоваться следующим способом. На коллекторную обмотку трансформатора подаем прямоугольные импульсы с частотой 1. 10 кГц небольшой амплитуды (можно использовать выход сигнала калибровки осциллографа). Туда же подключаем вход осциллографа и по полученной картинке делаем заключение.
На исправном трансформаторе амплитуда полученных продифференцированных импульсов должна быть не меньше амплитуды исходных прямоугольных. Если ТДКС имеет короткозамкнутые витки, тогда мы увидим короткие продифференцированные импульсы амплитудой в два и более раз меньше исходных прямоугольных.
Этот способ очень рационален, так как позволяет при проверке обойтись только одним измерительным прибором, но, к сожалению, не каждый осциллограф имеет выход генератора, предназначенный для калибровки. В частности, такие популярные осциллографы, как С1-94, С1-112, не имеют отдельного генератора калибровки. Предлагаю изготовить простой генератор на одной микросхеме и разместить его прямо в корпусе осциллографа, что поможет быстро и эффективно производить проверку строчных трансформаторов.
Схема генератора показана на рис. 5.
Собранный генератор можно расположить в любом удобном месте внутри осциллографа, а питание подвести от шины 12 В. Для включения генератора удобно использовать сдвоенный тумблер (П2Т-1 -1 В), его лучше расположить на передней панели прибора в свободном месте не далеко от входного разъема осциллографа.
. При включении генератора через пару контактов тумблера подается питание, а другая пара контактов соединит выход генератора с входом осциллографа. Таким образом, для проверки трансформатора достаточно обычным сигнальным проводом соединить обмотку трансформатора с входом осциллографа.
СПОСОБ 5
Этот способ позволяет проверить ТДКС на межвитковое замыкание и обрыв в обмотках без применения генератора.
Для проверки трансформатора отсоединяем вывод ТДКС от источника питания (110 . 160 В). Коллектор выходного транзистора строчной развертки замыкаем перемычкой на общий провод. Блок питания по цепи 110. 160 В нагружаем лампочкой 40. 60 Вт, 220 В. Находим на вторичных обмотках трансформатора блока питания напряжение 10. 30 В и через резистор сопротивлением примерно 10 Ом подаем его к отсоединенному выводу ТДКС. С помощью осциллографа контролируем сигнал на резисторе. Если в трансформаторе есть межвитковое замыкание, картинка будет иметь вид «грязно-пушистого прямоугольника», и почти все напряжение упадет на резисторе. Если замыканий нет, прямоугольник будет чистый, и падение напряжения на резисторе будет составлять доли Вольта. Контролируя сигнал на вторичных обмотках, можно определить их неисправность. Если прямоугольник есть — обмотки исправны, если нет — оборваны. Далее убираем резистор 10 Ом и вешаем нагрузку (0,2. 1,0 кОм) на каждую вторичную обмотку ТДКС. Если картинка на выходе с нагрузкой практически повторяет входную, можно сделать вывод, что ТДКС исправен, и смело возвращать все на место.
Таким образом, воспользовавшись одним из приведенных способов, можно без труда определить неисправность подозрительного трансформатора.

Читайте также:  Стабилизатор напряжения 220в для самогонного аппарата


МЕТОДЫ ПРОВЕРКИ ТРАН СФОРМАТОРОВ

М. Г. РЯЗАНОВ

Хочу поделиться простым и надежным (100% !) методом проверки сплит трансформаторов в ТВ, мониторах и т.д. Для этого используем коллекторную обмотку трансформатора. На нее подаем прямоугольные импульсы 1. 10 кГц небольшой амплитуды. Я использую для этого выход сигнала калибровки осциллографа С1-114. Туда же подключаем вход осциллографа, и по полученной картинке делаем заключение. При исправном трансформаторе максимальный размах амплитуды полученных продифференцированных импульсов должен быть не меньше амплитуды исходных прямоугольных. Если сплит трансформатор имеет короткозамкнутые витки, тогда мы увидим короткие продифференцированные импульсы амплитудой в два и более раз меньше исходных, прямоугольных. При небольшом опыте этим методом также можно определять неисправность трансформаторов сетевых импульсных блоков питания. Метод работает и без выпаивания трансформатора. Естественно, надо убедиться в отсутствии КЗ во вторичных цепях окружения.

Очень удобный и
простой пробник для проверки ТДКС и строчных катушек ОС в телевизорах.

Романов. М., г. Лод, Израиль.

Я пользуюсь им уже 6-7 лет, и за это время практически все неисправные ТДКСы были задефектованы именно им. Надежность диагностики подтверждает практика его использования. Основной показатель при проверке выпаянного ТДКС — это звук, раздающийся в пьезокерамическом излучателе с частотой 15 кГц, который легко услышать при исправном трансформаторе или ОС. При проверке ТДКС подключается только коллекторная обмотка.
Детали. Излучатель пьезокерамический (например, от китайского будильника), транзисторы КТ315 или подобные, диоды 1N4148. Резисторы, стоящие в коллекторах транзисторов, включающих светодиоды (R5, R8), придется подобрать по четкому срабатыванию LED1 при подключении любого проводника и LED2,
только при подключении исправного ТДКС.

Пользоваться данным устройством очень просто: подключить два конца коллекторной обмотки испытуемого трансформатора к точкам LX1, если ТДКС исправен, загорается светодиод LED1-слышен писк 15 кГц, если писка нет — ТДКС неисправен.
Также проверяется отклоняющая система, только вместо писка, загорается светодиод LED2. Любой короткозамкнутый виток или пробитый диод в высоковольтной обмотке проверяемого строчного трансформатора или отклоняющей системы срывают резонанс, и звук отсутствует или ослабляется до такой степени, что его еле-еле слышно.

Примечание: информация с сайта Ремонт TV по-русски

Источник

Оцените статью
Adblock
detector