Как снять напряжение с вала

Как снять напряжение с вала

Часто в металлической заготовке может иметься внутреннее напряжение, не имеющее внешних сил. Образуется оно при изготовлении заготовки из-за неравномерного охлаждения, например, при ковке, литье и в местах сварки. Остаточное напряжение может вызвать нарушение формы заготовки, из-за чего происходит быстрый износ или деформация детали. Во избежание подобного, в данной статье описаны способы устранения внутреннего напряжения.

Как правило, в заготовке, которая поступает на металлорежущий станок, обычно имеются внутренние напряжения, сохраняющиеся при отсутствии внешних сил, именно поэтому они называются – остаточными.

Остаточные напряжения различаются на:

  • напряжения первого рода, которые охватывают наибольшую часть заготовки;
  • напряжения второго рода, которые образуются в микроскопических объемах – кристаллах, зернах;
  • напряжения третьего рода, которые характерны для ячеек кристаллической решетки.

Во время механической обработки, когда в виде припуска с заготовки удаляется часть металла, совершается перераспределение внутренних остаточных напряжений и их временное равновесие нарушается. При этом основную роль здесь играют именно напряжения первого рода. Характер и величина распределения остаточных напряжений напрямую зависят от конфигурации заготовки, соотношения размеров отдельных элементов, ее габаритных размеров, способа получения исходной заготовки, а также других немаловажных факторов.

Большие остаточные напряжения появляются в исходных заготовках, которые получаются путем литья, ковки, штамповки, из-за неравномерного охлаждения различных элементов заготовки. В сварно-литых, сварно-штампованных или просто сварных конструкциях наибольшие внутренние напряжения зарождаются именно в местах сварки, где непосредственно из-за местного охлаждения и нагрева происходят неоднородные объемные изменения. При этом диффузионные процессы и структурные превращения металла при сварке также способствуют возникновению остаточных напряжений разного рода.

В особо неблагоприятных моментах остаточные напряжения способны вызвать не только существенные нарушения формы заготовки (например, коробление, изогнутость и др.), но и всевозможные трещины.

Срезание поверхностных слоев с металлической заготовки освобождает ранее уравновешенные силы, поэтому остаточные напряжения деформируют саму заготовку. Однако и сам процесс резания тоже служит источником остаточных напряжений, возникающих как результат пластической деформации верхнего слоя поверхности и нагрева зоны резания.

Обычно перераспределение внутренних напряжений совершается не сразу, а постепенно, также постепенно происходит и изменение формы заготовки или готовой детали. На самом деле в практике случаются моменты, когда исходная заготовка, которая получила большие остаточные напряжения, проходит непосредственно именно черновую обработку. Таким образом, деформация заготовки и внутренние напряжения перераспределяются частично. При этом получившиеся искажения формы устраняются, как правило, при чистовой обработке. Готовая деталь, (если конечно она годная) ставится на машину, а через кое-какое время уже при эксплуатации быстро изнашивается, причина этого одна — деформация данной детали, которая произошла после полной ее обработки.

Чтобы не случались такие казусы именно поэтому – устранению внутренних напряжений – необходимо уделять самое основательное внимание. Простейший путь устранения внутренних напряжений — это разделить обработку резанием на несколько этапов, то есть:

  • на первом этапе выполняется черновая обработка, путем удаления наибольшей части припуска с поверхностей заготовки;
  • на втором этапе заготовка передается на получистовую обработку;
  • на третьем этапе изготовление детали заканчивается путем чистовой обработки.

Так как зачастую заготовки обрабатывают партиями: черновая, получистовая и чистовая обработки производятся на разных станках, а в некоторых случаях и в разных цехах, поэтому между этими обработками проходит определенное время. В основном именно за это время и происходит перераспределение внутренних напряжений и соответственно деформация заготовок. Чем больше временной промежуток между обработками (черновой и чистовой), тем естественно и меньше опасность искажения форм готовых деталей.

Читайте также:  Амплитудное напряжение в сети 230

Естественное старение

Длительное выдерживание заготовки для снятия остаточных напряжений называется – «естественным старением». Сам процесс естественного старения весьма и весьма медленный. Достаточно уточнить, что самая основная часть остаточных напряжений именно в сложных отливках при естественном старении снимается в течение 2-3х месяцев. Однако следует учесть, что даже после указанного срока еще в течение нескольких месяцев оставшиеся напряжения способны воздействовать на форму заготовки.

Многомесячное естественное старение крайне «не» экономично — потому как чрезвычайно затягивается весь производственный цикл, стремительно возрастает объем неготового производства, значительно снижаются оборотные средства предприятия, поэтому естественное старение главным образом применяют исключительно для особо ответственных и дорогостоящих отливок, к примеру, заготовок станин прецизионных станков.

Для того чтобы ускорить процесс перераспределения, а также снятия остаточных напряжений, очень часто старение происходит на открытом воздухе (то есть, резкая смена температуры «дня и ночи» существенно способствует интенсификации процесса старения).

Снятие остаточного напряжения

Для средних или достаточно мелких отливок самым эффективным способом снятия непосредственно внутренних напряжений является так сказать искусственное старение, то есть специальный процесс термической обработки. Отливка помещается в печь доведенную до температуры в 500-600оС, и выдерживается в ней в течение 1-6 часов (чем крупнее отливка, тем соответственно и больше выдержка). Далее печь вместе с отливкой медленно охлаждают таким образом, чтобы абсолютно все части отливки (толстые и тонкие) охлаждались – равномерно. При этом скорость охлаждения должна составлять 25-75 градусов в час. Когда температура отливки снизится примерно до 200-250оС, она вынимается из печи и на воздухе окончательно охлаждается.

Для снятия напряжений, которые были получены при ковке, литье и штамповке, также применяют и отжиг, то есть нагрев до температуры в 400-600оС с выдержкой в 2,5 минуты на 1 мм толщины сечения заготовки, для сварных же заготовок высокотемпературный отпуск выполняется при нагреве до 600—650оС. Также отжигают и заготовки, получаемые из проката стали.

Вследствие значительных пластических деформаций при прокатке непосредственно в поверхностных слоях заготовок формируются существенные растягивающие, а вот во внутренних слоях наоборот сжимающие напряжения. Если же с такой заготовки снимается неравномерный припуск, то, безусловно, из-за перераспределения внутренних напряжений ее форма может измениться. Именно поэтому, к примеру, после фрезерования на валах длинных шпоночных канавок, изготовляемых из проката, могут случаться искривления валов. Для исправления этой кривизны заготовок валов, стержней, длинных планок, осей и прочих подобных элементов правят их исключительно в холодном состоянии. В таком процессе правки происходит упругая, и затем пластическая деформация материала.

Тщательная правка позволяет практически полностью устранить кривизну заготовки, которая вызвана непосредственно действием остаточных напряжений. Однако во время правки в заготовках появляются новые напряжения, что при дальнейшей чистовой обработке (хуже — в работающей машине) данные остаточные напряжения способны достаточно легко вызвать новые искажения формы. Именно поэтому для ответственных деталей применять правку крайне – нежелательно.

Источник

Способы снижения влияния концентраторов напряжений на усталостную прочность валов и осей

В нашей работе мы часто сталкиваемся явлением, поломки тех или иных деталей оборудования. По виду разрушения эти поломки часто имеют усталостный характер, как раз на участках концентрации напряжений.

Что такое концентрация напряжений

Концентрацией напряжений называют резкое возрастание напряжений в местах резкого изменения формы тела (в районе внутренних углов, выточек, отверстий, канавок и т.д.). В местах концентрации напряжений несправедлива гипотеза плоских сечений и формулы сопротивления материалов неприменимы.

Напряжения вблизи концентраторов напряжений определяются методами теории упругости или экспериментально (методы фотоупругости, голографической интерферометрии, тензометрии, муаровых полос и др.). Для оценки степени концентрации напряжений вводится теоретический коэффициент концентрации напряжений. Эффективный коэффициент концентрации напряжений k, является критерием чувствительности материала к концентрации напряжений и равен отношению предела прочности гладкого образца вк условному пределу прочности надрезанного образца σ в надр . Условный предел прочности надрезанного образца равен отношению предельной нагрузки, выдерживаемой образцом с надрезом, к площади наименьшего сечения образца.

Читайте также:  Преобразователь напряжения взлет ивп

Ярко выражены усталостные повреждения в цилиндрических деталях по типу валов. На рис. 1 приведен пример вала, с усталостной поломкой которого (рис. 2) пришлось столкнуться на практике нашему коллективу.

Рисунок 1 – Вал-шестерня в составе валковой машины Рисунок 2 – Общий вид поломки вала

Как видно, на рис. 2 поломка имеет явные признаки усталостного разрушения детали. Об этом свидетельствует характер излома, а также это косвенно подтверждается наличием значительного износа рабочих поверхностей зубчатой шестерни. Кроме того, в процессе эксплуатации происходили кратковременные перегрузки линии привода, которые не приводили к аварийным ситуациям благодаря наличию клиноременной передачи и защиты по току электродвигателя. Тем не менее, наличие даже кратковременных перегрузок способствовало развитию усталостных процессов в данном валу. Но одним из важных моментов, который оказал существенное влияние на усталостное разрушение вала, являлось наличие концентраторов напряжений на участках перехода — галтели были очень малы, а перепад диаметра от основного тела вала к шестерне значительный.

Данный практический эпизод дал нам повод для обновления в памяти знаний о концентраторах напряжений, что в дальнейшем привело нас к разработке ряда технических решений по деталям оборудования, которым занимается наш коллектив. Разработанные решения касались изменения профиля некоторых валов с целью снижения концентрации напряжений на участках перехода.

Далее приведем краткую информацию, которой мы руководствовались при поиске рациональных конструктивных решений, а также ту, которая может быть полезна нашим читателям.

И как всегда, по традиции, просим делится Вашим мнением и знаниями, ведь мы работая в небольшом коллективе, сталкиваясь с большим количеством разнообразных задач, не можем обладать полнотой знаний по всем направлениям машиностроения, ремонта и эксплуатации оборудования и любой совет и конструктивную критику воспринимаем с благодарностью.

Типы концентраторов напряжений

Концентраторы напряжений в совокупности с действием повышенных нагрузок способствуют образованию трещин в деталях машин. За счет оптимизации геометрических параметров деталей возможно повысить ресурс деталей работающих в условиях воздействия переменных нагрузок. К таким способам оптимизации можно отнести создание разгрузочных канавок, скругление углов перехода, смещение концентраторов в менее нагруженные участки детали и т. п.

Особенностью многих концентраторов напряжений в деталях является то, что они расположены на участках технологических переходов, в которых как раз и возникают пиковые напряжения (рис. 1).

Рисунок 3 – Пример типичных концентраторов напряжений

(a) и (b) – вал с радиальной канавкой при растяжении;
(c) и (d) ступенчатая плоская пластина, подвергаемая изгибу;
(e) и (f) вал подвергаемый кручению;
(а), (в) и (д) – расчеты произведены Ansys;
(б), (г) и (е) – расчеты произведены в Inventor.

К примеру, у деталей исходная заготовка которой представляет собой поковку, при последующей механической обработке происходит удаление упрочненных участков. Кроме того, переходы формы кованых и штампованных деталей имеют пониженную прочность на этих участках за счет вытяжки металла.

Для литых заготовок концентраторы образуются на участках перехода формы за счет нарушения структуры металла при кристаллизации и охлаждении. На таких участках высока вероятность возникновения микротрещин, присутствия пористости металла и остаточных напряжений.

Таким образом существуют два типа концентраторов напряжений — обусловленные геометрическими параметрами детали и технологические.

Концентраторы напряжений в валах и осях

Источниками концентрации напряжений в валах и осях являются уже упомянутые ранее участки перехода формы, а также условия монтажа других деталей — ступенчатые переходы, шлицы, шпоночные пазы, резьбовые участки, поперечные отверстия, проточки, напрессовка или зажим деталей и т .п. Таким образом, концентрация напряжений определяется деталями, которые крепятся на вал или ось и размещением опор.

На рис. 3 представлены типичные примеры участков перехода формы валов и осей.

Рисунок 4 – Формы переходов для валов и осей

  1. Рис 4а. Размеры радиуса r и перепада диаметров d и D при установке подшипников регламентируются следующими рекомендуемыми соотношениями: h/r=3, r/d=0,02…0,04 (для подшипников), r/d=0,03…0,06 (для втулок), с учетом размеров фасок на кольцах; эффективные коэффициенты концентрации напряжений* изгиба и кручения k=2,0…2,3 для стали в=600…1000 МПа.
  2. Для валов из легированных сталей с соотношением D/d=1,4 значения эффективного коэффициента концентрации напряжений равны k=1,6…3,2 при соответствующем соотношении r/d=0,011…0,028.
  3. Рис 4б. С учетом того, что выполнение галтелей уменьшает ресурс шлифовальных кругов и усложняет обработку, рекомендовано делать выточки для выхода круга с наибольшими возможными закруглениями.
  4. Рис. 4в и 4г. Для напряженных валов рекомендовано применять галтели с эллиптическим контуром или очерченные разными радиусами. Такой подход позволяет сделать более равномерным распределение напряжений вдоль линии перехода вала.
  5. Рис. 4д. Для уменьшения протяженности галтели в ряде конструктивных исполнений используют галтели с поднутрением участка вала на большем диаметре. Однако, такой подход усложняет технологию изготовления деталей.
  6. Рис. 4е. Иногда, при наличии протяженной галтели на валу, для улучшения условий монтажа подшипников и колес используют промежуточное упорное кольцо, внутренняя поверхность которого повторяет контур галтели.
  7. Рис. 4ж и 4з. Иногда эффективным является применение разгрузочных кольцевых канавок на ступени большего диаметра. Применение таких канавок снижает нагруженность перерезанных волокон. Кроме того, применение разгружающих канавок глубиной 0,8 от глубины основной канавки, по примеру рис. 3 ж, позволяет снизить напряжения в окрестности основной канавки на 20%.
  8. Рис. 4и. Для валов, которые имеют возможность увеличения длины переходных участков удается добиться оптимальных параметров галтели – при длине участка перехода , равной диаметру значения коэффициентов концентрации напряжений при изгибе k и кручении kстремятся к единице.
  9. Рис. 4к. Для полых валов рекомендован конусный переходной участок с углом конуса 4, длиной d/3 и галтель r/d=0,05.
Читайте также:  Формула напряжения через плотность тока

В качестве иллюстрации эффективности применения разгрузочных канавок на рис. 5 приведен простой пример расчетной модели.

Рисунок 5 – Пример моделирования снижения концентрации напряжений

Снижение усталостной прочности валов происходит также при напрессовке деталей. Снизить негативное влияние на показатели прочности применяют следующие методы:

  1. Рис. 6а. Увеличение диаметра вала на участке сопряжения со ступицей на 5% с выполнением плавных галтелей на участках перехода. Такой подход позволяет увеличить предел выносливости при передаче изгибающего момента через ступицу на 20…25%.
  2. Рис. 6б, 6в. Изготовление круговых выточек у кромок вала позволяет повысить прочность примерно в 1,5 раза.
  3. Рис. 6г, 6д. Изготовление на торцах ступиц разгрузочных канавок. При этом стенки у кромок должны быть минимальной толщины. Это позволяет повысить прочность на 20…40%.
  4. Обкатка роликами галтелей и участка сопряжения со ступицей позволяет увеличить прочность, примерно, вдвое.
  5. Рис. 6е. На 15…20% можно увеличить прочность соединений при использовании ступиц конической формы.

Рисунок 6 – Способы повышения усталостной прочности сопряжений в валах

В качестве примера применения описанных выше подходов на рис. 7, 8 приведен пример разработанного вала с модифицированными концентраторами напряжений.

Рис. 7. Модель вала с модифицированными концентраторами напряжений Рис. 8. Чертеж вала с модифицированными концентраторами напряжений

При конструировании данного вала, как видно из чертежа, применены отдельные приемы увеличения усталостной прочности. Кроме того, данный вал, как и тот, что представлен на рис.1, подвергается кратковременным перегрузкам, поэтому изначально расчеты велись с учетом максимальных нагрузок, которые могут быть на 30…50% выше номинальных. Это сделано было, по той причине, что зачастую клиенты, желая сэкономить на оборудовании, просят дать им машину с заведомо меньшей несущей способностью, при этом работают на пределе ее технических характеристик. При этом никто не гарантирует возникновения внештатных колебаний технологической нагрузки.

Расчет вала производился классическими методами сопротивления материалов, т.е. мы не прибегали в данном случае к моделированию нагруженности вала в специализированных компьютерных системах с применением метода конечных элементов.

Вал показанный на рис.1. также был модифицирован, но по просьбе нашего клиента мы не выкладываем его рабочий чертеж.

Резюме

В процессе нашей повседневной работы мы порой забываем о простейших приемах повышения ресурса эксплуатации деталей, поэтому периодически приходится заново открывать для себя давно известные правила. Что-то приходит с практикой, а кое-где нужен совет более опытного товарища. Мы надеемся на взаимопонимание наших читателей и будем ждать советов и практических рекомендаций.

Источник

Оцените статью
Adblock
detector