Как влияет положение металла в ряду напряжений

Ряд активности металлов, когда им пользоваться

Ряд напряжений (ряд активности или электрохимический ряд напряжения ЭХРН) металлов используется на практике для относительной оценки химической активности металлов в реакциях с водными растворами солей и кислот и для оценки катодных и анодных процессов при электролизе.

ЭЛЕКТРОХИМИЧЕСКИЙ РЯД НАПРЯЖЕНИЙ МЕТАЛЛОВ

Восстановительная активность металлов (свойство отдавать электроны) уменьшается, а окислительная способность их катионов (свойство присоединять электроны) увеличивается в указанном ряду слева направо.

  • Металлы, стоящие левее, являются более сильными восстановителями, чем металлы, расположенные правее: они вытесняют последние из растворов солей. Например, взаимодействие Zn + Cu 2+ → Zn 2+ + Cu возможно только в прямом направлении. Цинк вытесняет медь из водного раствора её соли. При этом цинковая пластинка растворяется, а металлическая медь выделяется из раствора.
  • Металлы, стоящие в ряду левее водорода, вытесняют водород при взаимодействии с водными растворами кислот-неокислителей; наиболее активные металлы (до алюминия включительно) — и при взаимодействии с водой.
  • Металлы, стоящие в ряду правее водорода, с водными растворами кислот-неокислителей при обычных условиях не взаимодействуют.
  • При электролизе металлы, стоящие правее водорода, выделяются на катоде; восстановление металлов умеренной активности сопровождается выделением водорода; наиболее активные металлы (до алюминия) невозможно при обычных условиях выделить из водных растворов солей.

Источник

Большая Энциклопедия Нефти и Газа

Положение — металл

Факторы, влияющие на положение металла в ряду напряжений. [31]

Активность гидроокисей с изменением положения металла в 4 — м периоде растет, достигает максимума на Мп и Fe и затем падает к Со. Этот ход зависимости сохраняется и в ряду соответствующих окислов [455, 458] ( рис. 57), но абсолютная активность их значительно ниже. [33]

В частности, по положению металлов IB ряду напряжений южно судить об их отношении к кислотам. [35]

Величина ц тесно связана с положением металла в ряду напряжений. Так, например, выход по току у алюминия равен нулю. [36]

Реакции протекают в соответствии с положением металлов в электрохимическом ряду напряжений. [37]

Какие из приведенных факторов влияют на положение металла в ряду напряжений: величина сродства к электрону атомов; величина ионизационного потенциала атомов; энергия кристаллической решетки металла; теплота гидратации ионов металла; концентрация ионов металла в растворе. [38]

Эта автоматизация осуществляется при помощи датчиков положения металла и путевых выключателей, контролирующих состояние механизма. [39]

Емкостные датчики предназначаются индуктивного путе для контроля положения металла или вого выключателя. [41]

При условиях катализа должно наступить равновесие между положениями бензильного металла и металла в кольце, и преобладает более высокая кислотность первого. Но и на Na при 300 С, и на К при 200 С [156, 160] с бензолом и олефинами все же были получены небольшие выходы алкилата. [42]

Интенсивность действия водных растворов кислот на металлы соответствует положению металлов в ряду стандартных электродных потенциалов ( см. гл. [43]

Характер реакции хлорированных полимеров с оксидами металлов зависит от положения металла в таблице Д. И. Менделеева и от структуры хлорированного полимера. [45]

Источник

Электрохимический ряд напряжений металлов (ЭРН)

Li K Ba Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb H Cu Hg Ag Pt Au

Какую информацию можно получить из ряда напряжений?

Ряд напряжений металлов широко используется в неорганической химии. В частности, результаты многих реакций и даже возможность их осуществления зависят от положения некоторого металла в ЭРН. Обсудим этот вопрос подробнее.

Взаимодействие металлов с кислотами

Металлы, находящиеся в ряду напряжений левее водорода, реагируют с кислотами — неокислителями. Металлы, расположенные в ЭРН правее Н, взаимодействуют только с кислотами — окислителями (в частности, с HNO 3 и концентрированной H 2 SO 4 ).

Пример 1 . Цинк расположен в ЭРН левее водорода, следовательно, способен реагировать практически со всеми кислотами:

Zn + H 2 SO 4 = ZnSO 4 + H 2

Пример 2 . Медь находится в ЭРН правее Н; данный металл не реагирует с «обычными» кислотами (HCl, H 3 PO 4 , HBr, органические кислоты), однако вступает во взаимодействие с кислотами-окислителями (азотная, концентрированная серная):

Cu + 4HNO 3 (конц.) = Cu(NO 3 ) 2 + 2NO 2 + 2H 2 O

Cu + 2H 2 SO 4 (конц.) = CuSO 4 + SO 2 + 2H 2 O

Обращаю внимание на важный момент: при взаимодействии металлов с кислотами-окислителями выделяется не водород, а некоторые другие соединения. Подробнее об этом можно почитать здесь!

Взаимодействие металлов с водой

Металлы, расположенные в ряду напряжений левее Mg, легко реагируют с водой уже при комнатной температуре с выделением водорода и образованием раствора щелочи.

Пример 3 . Натрий, калий, кальций легко растворяются в воде с образованием раствора щелочи:

Металлы, расположенные в ряду напряжений от водорода до магния (включительно), в ряде случаев взаимодействуют с водой, но реакции требуют специфических условий. Например, алюминий и магний начинают взаимодействие с Н 2 О только после удаления оксидной пленки с поверхности металла. Железо не реагирует с водой при комнатной температуре, но взаимодействует с парами воды. Кобальт, никель, олово, свинец практически не взаимодействуют с H 2 O не только при комнатной температуре, но и при нагревании.

Металлы, расположенные в правой части ЭРН (серебро, золото, платина) не реагируют с водой ни при каких условиях.

Взаимодействие металлов с водными растворами солей

Речь пойдет о реакциях следующего типа:

металл (*) + соль металла (**) = металл (**) + соль металла (*)

Хотелось бы подчеркнуть, что звездочки обозначают в данном случае не степень окисления, не валентность металла, а просто позволяют различить металл &#x2116 1 и металл &#x2116 2.

Для осуществления подобной реакции необходимо одновременное выполнение трех условий:

  1. соли, участвующие в процессе, должны растворяться в воде (это легко проверить, пользуясь таблицей растворимости);
  2. металл (*) должен находиться в ряду напряжений левее металла (**);
  3. металл (*) не должен реагировать с водой (что тоже легко проверяется по ЭРН).

Пример 4 . Рассмотрим несколько реакций:

Первая реакция легко осуществима, все перечисленные выше условия выполнены: сульфат меди растворим в воде, цинк находится в ЭРН левее меди, Zn не реагирует с водой.

Вторая реакция невозможна, т. к. не выполнено первое условие (сульфид меди (II) практически не растворяется в воде). Третья реакция неосуществима, поскольку свинец — менее активный металл, нежели железо (находится правее в ЭРН). Наконец, четвертый процесс НЕ приведет к осаждению никеля, поскольку калий реагирует с водой; образовавшийся гидроксид калия может вступить в реакцию с раствором соли, но это уже совершенно другой процесс.

Процесс термического распада нитратов

Напомню, что нитраты — это соли азотной кислоты. Все нитраты разлагаются при нагревании, но вот состав продуктов разложения может быть разным. Состав определяется положением металла в ряду напряжений.

Нитраты металлов, расположенных в ЭРН левее магния, при нагревании образуют соответствующий нитрит и кислород:

В ходе термического разложения нитратов металлов, расположенных в ряду напряжений от Mg до Cu включительно, образуются оксид металла, NO 2 и кислород:

2Cu(NO 3 ) 2 = 2CuO + 4NO 2 + O 2

Наконец, при разложении нитратов наименее активных металлов (расположенных в ЭРН правее меди) образуются металл, диоксид азота и кислород:

Источник

Ряд напряжений и химические свойства металлов

Ряд напряжений и химические свойства металлов

Изучая курс общей и неорганической химии мы с вами упустили очень важную тему, на который постоянно ссылаемся при изучении свойств простых веществ и их соединений, но ни разу не пояснили что это такое и почему именно так, а не иначе. Речь сегодня пойдет про ряд напряжений и химические свойства металлов. Понять, что в заданиях ЕГЭ по химии нет прямого вопроса по этой теме, но без знания и понимая электрохимического ряда вы не сможете ответить на многие вопросы правильно. Давайте разбираться вместе

Вы наверняка знаете, что атомы типичных металлов могут отдавать электроны (не принимать, а только отдавать, они – доноры). Поэтому металлы в виде простых веществ в химических реакциях играют роль восстановителей. В случае действия сильных окислителей и при соблюдении определенных условий (к примеру нагревании) практически любой металл может быть окислен до положительной степени окисления.

Различная восстановительная способность металлов дает возможность разместить их в так называемый ряд напряжений и как его еще называют электрохимический ряд металлов. В этом ряду металлы располагаются в порядке уменьшения их восстановительных свойств и возрастания окислительных свойств соответствующих гидратированных катионов (посмотрите внимательно на таблицу, которые есть в любом справочнике)

Таким образом, мы видим, что в ряду напряжений слева располагаются металлы, которые вступая в реакцию с водными растворами будут проявлять сильные восстановительные свойства. Напротив, ионы, которые образуются при окислении этих металлов, будут проявлять слабые окислительные свойства. Поэтому такие металлы легко окисляются, а отвечающие им ионы трудно восстанавливаются.

Расположение металла в ряду напряжений определяет процесс окисления металла с образованием гидратированного иона, соответствующего низшей устойчивой в водном растворе степени окисления данного металла.

Данный металл может восстанавливать из растворов их соей металлы, которые расположены справа от него в ряду напряжений. Иными словами, металл левее вытесняет из солей металл, который находится правее него.

Металлы, расположенные в электрохимическом ряду правее водорода, не могут замещать его в молекулах кислот. Эти металлы хоть и реагируют с кислотами, которые обладают сильными окислительными свойствами, но в ходе реакции выделения водорода не будет (вспоминайте предыдущую нашу статью, какие продукты реакции будут в этом случае?).

Металлы, которые у нас расположены в ряду напряжений слева от водорода, могут вступать в реакции замещения с кислотами, вытесняя из последних водород. При этом помним, что ЭДС на основании которого и устанавливается расположение металла и водорода в ряду, измеряется в строго определенных условиях.

От чего же зависит положение металла в ряд?

  1. От энергии ионизации атома металла.
  2. От энергии гидратации, получаемого иона.
  3. От заряда иона.
  4. От размеров иона.

Рассмотрим теперь кто у нас в ряду напряжений из щелочных металлов стоит первым? Правильно, литий, но почему не цезий? Ведь, по логике он электрон отдает намного быстрее, чем литий. Но мы с вами вспоминаем правило выше, которое вы должны запомнить очень хорошо: ряд напряжений отражает процесс окисления металла с образованием гидратированного иона. Чем лучше и быстрее протекает процесс окисления, тем левее будет находится металл в электрохимическом ряду.

Вернемся к нашему коварному литию. В его случае имеет значение высокая энергия гидратации иона. Маленький размер приводит к притягиванию отрицательных концов полярных молекул воды гораздо сильнее, нежели у более «громоздкого» цезия, так как расстояние между центрами отрицательного и положительного зарядов в случае лития будет меньше. В итоге общий процесс (отдача электронов с последующей гидратацией полученного иона) энергетически более выгоден у лития чем у цезия.

Окисление металлов водой и раствором щелочей

Вытеснять водород из воды в состоянии только те металлы, которые стоят в ряду напряжений перед кадмием, но тут есть нюансы: ввиду ограничений кинетических порядков (образование нерастворимой в воде оксидной пленки тех же амфотерных металлов) при комнатной температуре в реакцию с водой вступают только щелочные и щелочноземельные металлы.

А вот металлы, располагающиеся правее в ряду, могут восстанавливать водород до воды при нагревании. К примеру магний, измельченный в порошок, реагирует с горячей водой, а алюминий, тоже в виде порошка реагирует с кипящей водой.

А такие металлы как цинк и алюминий могут восстанавливать водород даже из раствора щелочи:

По какому же принципу тот или иной металл растворяется в щелочи? Как это можно определить?

  1. Металл должен быть сильным восстановителем и окисляться ионами водорода даже в малых концентрациях последних, находящихся в растворе щелочей.
  2. Ион металла в степени окисления до которой он окисляется ионами водорода, образует в щелочном растворе растворимое соединение.

Мы должны всегда помнить, что восстановительные свойства металлов в одной и безводной среде могут отличаться. А значит и порядок расположения металлов исходя из их восстановительной способности отличается. К примеру, в безводной среде сильным восстановителем будет цезий, а в водной среде – литий.

Источник

Ряд напряжений металлов

По величине стандартного электродного потенциала металлы принято располагать в ряд напряжений металлов:

Li + /Li, Rb + /Rb, K + /K, Cs + /Cs, Ba 2+ /Ba, Sr 2+ /Sr, Ca 2+ /Ca, Na + /Na, Mg 2+ /Mg, Al 3+ /Al, Mn 2+ /Mn, Zn 2+ /Zn, Cr 3+ /Cr, Fe 2+ /Fe, Cd 2+ /Cd, Co 2+ /Co, Ni 2+ /Ni, Sn 2+ /Sn, Pb 2+ /Pb, Fe 3+ /Fe, 2H + /H2, Sb 3+ /Sb, Bi 3+ /Bi, Cu 2+ /Cu, Hg 2+ /Hg, Ag + /Ag, Pt 2+ /Pt, Au + /Au

1. Ряд напряжений характеризует окислительно-восстановительную способность системы «металл – ион металла». Чем меньшее значение имеет стандартный электродный потенциал металла, тем более сильным восстановителем он является. Чем больше потенциал металлического электрода, тем более высокой окислительной способностью обладают его ионы.

2. Электродный потенциал восстановления ионов водорода из воды по реакции 2H2O + 2ē = H2 + 2OH‾ равен φ = -0,41В. Активные металлы начала ряда, имеющие потенциалы значительно отрицательнее, чем -0,41В, вытесняют водород из воды. Магний вытесняет водород только из горячей воды. Металлы, расположенные между Mg и Cd, обычно не вытесняют H2 из воды, так как их поверхность покрыта защитными оксидными пленками.

3. Каждый металл способен вытеснять из растворов солей металлы, которые стоят в ряду напряжений правее его.

4. Металлы, стоящие в ряду напряжений левее водорода, способны вытеснять его из растворов кислот (HCl, разб. H2SO4).

5. Все металлы, стоящие в ряду напряжений до водорода, распространены в природе исключительно в виде соединений, а за водородом – и в самородном виде.

Источник

Читайте также:  Что такое напряжение среза
Оцените статью
Adblock
detector