Коммутированное напряжение что это такое

Большая Энциклопедия Нефти и Газа

Коммутирующее напряжение

Это достигается подачей опорного коммутирующего напряжения от генератора на диоды, что вызывает синхронное с сигналом, изменение проводимости диодов и обеспечивает фазочувствительное выпрямление. [31]

Необходимо выбрать подходящую величину коммутирующего напряжения . Меньшее напряжение позволяет использовать более дешевый тиристор, но потребует большей емкости конденсатора для получения достаточного тока и достаточного времени действия обратного напряжения, необходимого для запирания. В качестве коммутирующего должен быть использован конденсатор с развитой поверхностью фольги. Коммутирующее напряжение было выбрано равным 95 в. Если последовательно с выходным трансформатором будет подключена большая индуктивность, то можно будет, по-видимому, ограничиться меньшими напряжением или коммутирующим конденсатором. [32]

Для сохранения прежней величины коммутирующего напряжения ис снова необходимо вдвое уменьшить емкость конденсаторов. Это приводит к повышению эффективности использования конденсаторов в 4 раза по сравнению с преобразователем по схеме на рис. 88 и в 16 раз по сравнению с элементарным трехфазным преобразователем. [34]

Трем интервалам за время полупериода коммутирующего напряжения соответствуют три схемы замещения, на основе которых составляются системы дифференциальных уравнений. Учет граничных условий на концах интервалов и условия симметрии в периодическом режиме позволяют записать выражения для мгновенных значений напряжения ис и тока iL для всех трех интервалов. [36]

Дн выделяется лишь незначительная часть коммутирующего напряжения . [37]

При получении напряжения сигнала и коммутирующего напряжения от одного источника питания форма кривой напряжения несущей частоты сигнала и кривой коммутирующего напряжения одинаковы. Вследствие этого все выше написанные уравнения для мгновенных значений токов гн, i, / 2 и напряжений ис и ик справедливы для действующих значений этих токов и напряжений. [38]

Поэтому увеличение нагрузки создает более высокое коммутирующее напряжение на конденсаторе С, особенно при включении прерывателя. Если этот УПВ включается одновременно с yiJBi, то на конденсаторе С вследствие резонанса создается коммутирующее напряжение большей величины, чем при использовании диода. Поэтому такая схема с успехом переключает более сильные токи, позволяя брать при тех же токах меньшие коммутирующие емкости С. [39]

Выходное напряжение фазовращателя используется ка — коммутирующее напряжение для детектора. [40]

В узле задания фазных токов частота коммутирующего напряжения выбирается значительно выше частоты питающей тиристорные преобразователи сети, а процессы преобразования сигналов в этом узле протекают на порядок быстрее процессов регулирования величины электромагнитного момента двигателя. [41]

В этом случае при небольшой величине коммутирующего напряжения , что существенно снижает уровень ложного сигнала, обеспечивается хорошая линейность характеристики модулятора и симметричность выходных импульсов. Связь с нагрузкой / при этом реостат-но-емкостная. [43]

Желательно, чтобы вторичная обмотка трансформатора коммутирующего напряжения была статически экранирована от первичной. [44]

Источник

Коммутируемое напряжение что это?

Параметры реле

Параметры реле делятся на основные и не основные. Ориентироваться надо на основные параметры реле, т.к. именно они характеризуют их эксплуатационные возможности и область применения и в конечном итоге влияют на нормальную работоспособность реле.

В свою очередь, основные параметры делятся на:

  1. Электрические: чувствительность, рабочее напряжение (ток), напряжение (ток) срабатывания, напряжение (ток) отпускания, сопротивление контактов, сопротивление обмотки, коммутационная способность, электрическая изоляция.
  2. Временны´е: время срабатывания, время отпускания, время дребезга контактов.

Электрические параметры реле

• Чувствительность реле — способность срабатывать при определённом значении мощности, подаваемой на обмотку реле. Определяется магнитодвижущей силой (МДС) срабатывания. Если сравнивать между собой разные реле, то наиболее чувствительное будет то, у которое срабатывает при меньшей МДС. При этом якорь реле должен чётко притягиваться и контакты всех групп должны замкнуться/разомкнуться.

В справочниках обычно такой параметр как чувствительность не приводится. Он вычисляется из сопротивления обмотки и тока срабатывания.

Читайте также:  Понизить напряжение с 12 до 9 вольт с помощью стабилитрона

Pср = Iср2 * Rобм = Uср2 / Rобм

• Рабочее напряжение (ток).
Техническими условиями для конкретных типов реле устанавливается рабочее напряжение (ток), при питании которым обеспечивается нормальное функционирование реле. В технической документации на конкретное исполнение реле указывается его значение с допусками. При подаче на обмотку реле напряжения (тока) в указанных пределах, оно должно нормально функционировать.

• Напряжение (ток) срабатывания.
Это один из параметров реле, определяющий его чувствительность. Это минимальное напряжение (ток) при котором реле должно нормально сработать, т.е. переключить все свои контакты. А уже для дальнейшего удерживания якоря на обмотку реле надо подавать рабочее напряжение (ток), описанное в предыдущем пункте.

В технической документации данный параметр обязательно приводится для каждого исполнения реле.

Данный параметр является контрольным. Он характеризует устойчивость всех элементов конструкции и стабильность регулировки реле.

• Напряжение (ток) отпускания.
Обязательно приводится в технической документации на каждое исполнение реле как для нормальных условий эксплуатации, так и для условий, когда воздействуют различные факторы.

Отпускание реле — это не что иное, как возвращение контактов в исходное состояние. Происходит оно при снижении напряжения (тока) в обмотке реле до уровня, при котором якорь больше не может удерживаться в сработанном положении и возвращается в исходное состояние выключенного реле. Все контакты также переключаются в исходное состояние. Нормально замкнутые становятся замкнутыми, нормально разомкнутые — разомкнутыми.

Существует такой показатель, как коэффициент возврата. Это отношение тока отпускания к току срабатывания. Значение этого коэффициента у разных реле колеблется в очень больших пределах — от 0.1 до 0.98. Улучшение коэффициента возврата достигается путём сближения характеристик изменения электромагнитной силы, создающей магнитный поток, и силы пружины, противодействующей этому потоку. Также улучшения коэффициента возврата можно достичь путём уменьшения хода подвижной системы и снижения трения в её осях.

• Сопротивление обмотки.
Сопротивление обмотки — это активное сопротивление обмотки реле с допусками, измеренное на постоянном токе. Обязательно приводится в технической документации и справедливо для нормальной температуры окружающей среды.

• Сопротивление контактов электрической цепи.
Оно складывается из сопротивления элементов цепи контактов и сопротивления контактирующих поверхностей. Измерить сопротивление контактирующих поверхностей в реле очень сложно. Поэтому оно оценивается по сопротивлению всей цепи контактов.

Данный параметр может сильно изменяться как в процессе эксплуатации реле, так и в период доставки/транспортировки, т.к. зависит от многих факторов.

Попадание грязи на контакты реле влечёт за собой увеличение падения напряжения на контактах. Как следствие этого — повышенный нагрев контактов, который способен вообще вывести контактную пару из строя. Поэтому в технической документации как правило указывают сопротивление контактов на период поставки.

• Коммутационная способность контактов реле.
Определяется значением мощности, коммутируемой контактами реле, выполняющими определённое количество коммутаций.

Важно понимать, что существует такая вещь, как коррозия контактов. И она сильно зависит от коммутируемой мощности. Но проявляется она при токах в 100 мА и более. При меньших токах основное влияние на работоспособность реле оказывает механический износ подвижной системы и контактов.

В тех. документации как правило указан диапазон коммутируемых напряжений и токов, при которых гарантируется конкретное число коммутаций.

Максимальная мощность, которую способно коммутировать реле, ограничивается температурой нагрева контактов, при которой снижается механическая прочность материала контактов.

• Электрическая изоляция.
Характеризует электроизоляционные свойства реле. Это способность изоляции реле выдерживать перенапряжения (кратковременно и длительно), неизбежно возникающие в процессе эксплуатации аппаратуры. Изоляция реле определяется электрической прочностью промежутков — воздушных (межконтактных) зазоров и по поверхности диэлектрика платы реле. По этим промежуткам судят о токах утечки реле.

Временны´е параметры реле

• Время срабатывания — время, прошедшее с момента подачи напряжения на обмотку реле до первого замыкания нормально разомкнутых контактов.

• Время дребезга.
Иногда оговаривается в технической документации. Дребезг возникает после удара подвижных контактов о неподвижные.

• Время отпускания.
Определяется временем от момента снятия напряжения с катушки реле до момента замыкания нормально замкнутого контакта.

Читайте также:  Регулятор напряжения с 30в до 12в

Электромагнитное реле

Радиоэлектроника для начинающих

Для управления различными исполнительными устройствами, коммутации цепей, управления приборами в электронике активно применяется электромагнитное реле.

Устройство реле достаточно просто. Его основой является катушка, состоящая из большого количества витков изолированного провода.

Внутрь катушки устанавливается стержень из мягкого железа. В результате получается электромагнит. Также в конструкции реле присутствует якорь.Он закреплён на пружинящем контакте. Сам же пружинящий контакт закреплён на ярме. Вместе со стержнем и якорем ярмо образует магнитопровод.

Если катушку подключить к источнику тока, то образовавшееся магнитное поле намагничивает сердечник. Он в свою очередь притягивает якорь. Якорь укреплён на пружинящем контакте. Далее пружинящий контакт замыкается с другим неподвижным контактом. В зависимости от конструкции реле, якорь может по-разному механически управлять контактами.

Устройство реле

В большинстве случаев реле монтируется в защитном корпусе. Он может быть как металлическим, так и пластмассовым. Рассмотрим устройство реле более наглядно, на примере импортного электромагнитного реле Bestar. Взглянем на то, что внутри этого реле.

Вот реле без защитного корпуса. Как видим, реле имеет катушку, стержень, пружинящий контакт, на котором закреплен якорь, а также исполнительные контакты.

На принципиальных схемах электромагнитное реле обозначается следующим образом.

Условное обозначение реле на схеме состоит как бы из двух частей. Одна часть (К1) – это условное обозначение электромагнитной катушки. Она обозначается в виде прямоугольника с двумя выводами. Вторая часть (К1.1; К1.2) – это группы контактов, которыми управляет реле. В зависимости от своей сложности реле может иметь достаточно большое количество коммутируемых контактов. Они разбиваются на группы. Как видим, на обозначении изображены две группы контактов (К1.1 и К1.2).

Как работает реле?

Принцип работы реле наглядно иллюстрирует следующая схема. Есть управляющая цепь. Это само электромагнитное реле K1, выключатель SA1 и батарея питания G1. Также есть исполнительная цепь, которым управляет реле. Исполнительная цепь состоит из нагрузки HL1 (лампа сигнальная), контактов реле K1.1 и батареи питания G2. Нагрузкой может быть, например, электрическая лампа или электродвигатель. В данном случае в качестве нагрузки используется сигнальная лампа HL1.

Как только мы замкнём управляющую цепь выключателем SA1, ток от батареи питания G1 поступит на реле K1. Реле сработает, и его контакты K1.1 замкнут исполнительную цепь. На нагрузку поступит напряжение питания от батареи G2 и лампа HL1 засветится. Если разомкнуть цепь выключателем SA1, то с реле K1 будет снято напряжение питания и контакты реле K1.1 вновь разомкнуться и лампа HL1 выключится.

Коммутируемые контакты реле могут иметь своё конструктивное исполнение. Так, например, различают нормально-разомкнутые контакты, нормально-замкнутые контакты и контакты на переключение (перекидные). Разберёмся с этим поподробнее.

Нормально разомкнутые контакты

Нормально разомкнутые контакты – это контакты реле, которые находятся в разомкнутом состоянии до тех пор, пока через катушку реле не потечёт ток. Говоря проще, когда реле выключено, контакты тоже разомкнуты. На схемах реле с нормально-разомкнутыми контактами обозначается вот так.

Нормально замкнутые контакты

Нормально замкнутые контакты – это контакты реле, находящиеся в замкнутом состоянии, пока через катушку реле не начнёт течь ток. Таким образом, получается, что при выключенном реле контакты замкнуты. Такие контакты на схемах изображают следующим образом.

Переключающиеся контакты

Переключающиеся контакты – это комбинация из нормально-замкнутых и нормально-разомкнутых контактов. У переключающихся контактов есть общий провод, который переключается с одного контакта на другой.

Современные широко распространённые реле, как правило, имеют переключающиеся контакты, но могут встречаться и реле, которые имеют в своём составе только нормально-разомкнутые контакты.

У импортных реле нормально-разомкнутые контакты реле обозначаются сокращением N.O. А нормально-замкнутые контакты N.C. Общий контакт реле имеет сокращение COM. (от слова common – «общий»).

Теперь обратимся к параметрам электромагнитных реле.

Параметры электромагнитных реле

Как правило, размеры самих реле позволяют наносить на корпус их основные параметры. В качестве примера, рассмотрим импортное реле Bestar BS-115C. На его корпусе нанесены следующие надписи.

Читайте также:  Самостоятельная по теме электрическое напряжение

COIL 12VDC – это номинальное напряжение срабатывания реле (12V). Поскольку это реле постоянного тока, то указано сокращённое обозначение постоянного напряжения (сокращение DC обозначает постоянный ток/напряжение). Английское слово COIL переводится как «катушка», «соленоид». Оно указывает на то, что сокращение 12VDC имеет отношение к катушке реле.

Далее на реле указаны электрические параметры его контактов. Понятно, что мощность контактов реле может быть разная. Это зависит как от габаритных размеров контактов, так и от используемых материалов. При подключении нагрузки к контактам реле нужно знать мощность, на которую они рассчитаны. Если нагрузка потребляет мощность больше той, на которую рассчитаны контакты реле, то они будут нагреваться, искрить, «залипать». Естественно, это приведёт к скорому выходу из строя контактов реле.

Для реле, как правило, указываются параметры переменного и постоянного тока, которые способны выдержать контакты.

Так, например, контакты реле Bestar BS-115C способны коммутировать переменный ток в 12А и напряжение 120V. Эти параметры зашифрованы в надписи 12А 120VAC (сокращение AC обозначает переменный ток).

Также реле способно коммутировать постоянный ток силой 10А и напряжением 28V. Об этом свидетельствует надпись 10A 28VDC. Это были силовые характеристики реле, точнее его контактов.

Потребляемая мощность реле

Теперь обратимся к мощности, которую потребляет реле. Как известно, мощность постоянного тока равна произведению напряжения (U) на ток (I): P=U*I. Возьмём значения номинального напряжения срабатывания (12V) и потребляемого тока (30 mA) реле Bestar BS-115C и получим его потребляемую мощность (англ. — Power consumption).

Таким образом, мощность реле Bestar BS-115C составляет 360 милливатт (mW).

Есть ещё один параметр – это чувствительность реле. По своей сути, это и есть мощность потребления реле во включённом состоянии. Понятно, что реле, которому требуется меньше мощности для срабатывания, является более чувствительным по сравнению с теми, которые потребляют большую мощность. Такой параметр, как чувствительность реле, особенно важен для устройств с автономным питанием, так как включенное реле расходует заряд батарей. К примеру, есть два реле с потребляемой мощностью 200 mW и 360 mW. Таким образом, реле мощностью 200 mW обладает большей чувствительностью, чем реле мощностью 360 mW.

Как проверить реле?

Электромагнитное реле можно проверить обычным мультиметром в режиме омметра. Так как обмотка катушки реле обладает активным сопротивлением, то его можно легко измерить. Сопротивление обмотки реле может варьироваться от нескольких десятков ом (Ω), до нескольких килоом (). Обычно самое низкое сопротивление обмотки имеют миниатюрные реле, которые рассчитаны на номинальное напряжение 3 вольта. У реле, номинальное напряжение которых составляет 48 вольт, сопротивление обмотки намного выше. Это прекрасно видно по таблице, в которой указаны параметры реле серии Bestar BS-115C.

Номинальное напряжение (V, постоянное) Сопротивление обмотки (Ω ±10%) Номинальный ток (mA) Потребляемая мощность (mW)
3 25 120 360
5 70 72
6 100 60
9 225 40
12 400 30
24 1600 15
48 6400 7,5

Отметим, что потребляемая мощность всех типов реле этой серии одинакова и составляет 360 mW.

Электромагнитное реле является электромеханическим прибором. Это, наверное, является самым большим плюсом и в то же время весомым минусом.

При интенсивной эксплуатации любые механические части изнашиваются и приходят в негодность. Кроме этого, контакты мощных реле должны выдерживать огромные токи. Поэтому их покрывают сплавами драгоценных металлов, таких как платина (Pt), серебро (Ag) и золото (Au). Из-за этого качественные реле стоят довольно дорого. Если ваше реле всё-таки вышло из строя, то замену ему можно купить здесь.

К положительным качествам электромагнитных реле можно отнести устойчивость к ложным срабатываниям и электростатическим разрядам.

» Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

Источник

Оцените статью
Adblock
detector