Контроль наличия напряжения схема

Схема контроля за напряжением в сети

Схема контроля за напряжением в сети предназначено для автоматического отключения потребителя если напряжение в электросети будет на 22 V отличаться от заданного. То есть, если задано 220V, то потребитель работает в диапазоне от 188 до 242V. Если напряжение выходит за эти пределы потребитель отключается.

Схема контроля за напряжением в сети построена на основе микросхемы LM3914. Это индикаторная микросхема, она обычно применяется для индикации напряжения или уровня сигнала. На её выходе шкала на 10 светодиодов, причем шкала может быть, как точечной, так и линейной. В данном случае выбран точечный вариант.

Суть работы схемы заключается в том, что используется только один, примерно средний по значению, выход микросхемы, к которому вместо индикаторного светодиода подключен светодиод оптопары ключевого устройство, подающего ток на потребитель. Датчик напряжения представляет собой выпрямитель на одном диоде и делитель напряжения. На вход микросхемы напряжение поступает с этого делителя.

Делитель настроен так, что при номинальном напряжении в сети открыт будет тот выход микросхемы, к которому подключена оптопара ключевого устройства. При этом загорается светодиод оптопары и ток на потребитель подается. Если напряжение отклоняется вверх или вниз на одну ступень или более этот выход микросхемы закрывается и открывается какой-то другой, не используемый в данной схеме. При этом гаснет светодиод оптопары и ток на потребитель отключается. Принципиальная схема устройства показана на рисунке ниже.

Микросхема LM3914 питается от отдельного источника питания, напряжением 15V, который здесь не описывается. Напряжение питания микросхемы в данной схеме можно выбрать и другим, -от 12 до 18V.

Датчик напряжения состоит из выпрямителя на диоде VD1, конденсатора С2 и делителя напряжения на резисторах R3-R5. Резистор R5 подстроечный, что позволяет напряжение регулировать.

Таким образом, уровень переменного напряжения в сети определяется по постоянному напряжению на резисторе R5. Так как R5 питается от сети через выпрямитель и резисторы R3, R4, то постоянное напряжение на нем в самой прямой зависимости от величины переменного напряжения в сети.

Резистор R5 подстроечный, это позволяет в процессе налаживания схемы, да и при эксплуатации, выбрать любое напряжение в сети, которое будет схемой считаться номинальным.

Вывод 9 микросхемы А1 соединен общим минусом источника питания, поэтому микросхема работает в режиме точечного индикатора, то есть, когда открыт только один её выход, тот который соответствует входному напряжению в данный момент.

Резистором R5 входной делитель настраивают так, чтобы при желаемом номинальном напряжении в сети был открыт 6-й выход микросхемы, то есть, вывод 14. При этом ток с вывода 14 поступает на светодиод оптопары U1, включенный вместо индикаторного. Оптопара открывается и открывает симистор VS1, через который подается питание на потребитель.

Если входное напряжение на одну или более ступеней снижается или увеличивается, то вывод 14 микросхемы закрывается, ток через светодиод оптопары U1 прекращается и потребитель выключается.

Для налаживания нужен ЛАТР или аналогичный лабораторный автотрансформатор и вольтметр переменного тока. Налаживание сводится к подстройке R5 так, чтобы схема работала, так, как это требуется. Впрочем, наладить можно и без ЛАТРа, если в момент налаживания напряжение в сети было нормальным, можно просто найти положения R5 при которых наступает выключение потребителя и повернуть R5 в среднее между ними положение.

Быстродействие схема контроля за напряжением в сети сильно зависит от емкости конденсатора С2, потому что от этого зависит быстрота изменения контрольного напряжения. Если нужно «затормозить» схему, можно его емкость увеличить, и наоборот, если нужно более быстрая реакция, его емкость нужно уменьшить. Но, сильно уменьшать емкость нельзя, потому что в таком случае конденсатор перестанет сглаживать пульсации, и контрольное напряжение станет не постоянным, а пульсирующим, что приведет к ошибкам в работе схемы.

Можно доработать схема контроля за напряжением в сети путем добавления индикаторных светодиодов на выходы, которые не используются. В таком случае, когда напряжение в норме не будет гореть ни один из этих светодиодов, а вот когда напряжение вышло за норму так, что произошло отключение потребителя, будет гореть светодиод, показывающий на сколько это отклонение от нормы существенно. Можно экспериментируя с ЛАТРом и вольтметром подписать эти светодиоды соответствующими их зажиганию значениями напряжения.

Если нужно расширить диапазон нормального напряжения, не ограничиваясь одной ступеней, можно соединить вместе соседние выходы микросхемы. Но соединять нужно через дополнительные диоды. То есть, взять диоды типа КД522 необходимое количество и катоды их соединить с соответствующими выходами микросхемы, аноды соединить вместе и с катодом светодиода оптопары. Но в таком большом расширении диапазона «нормальности» вряд ли есть смысл, хотя могут быть разные ситуации.

Диод VD1 можно заменить любым маломощным выпрямительным диодом на напряжение не ниже 400V.

Выходной каскад можно собрать и по другой схеме, используя другую оптопару и другой симистор. Можно вместо схемы на U1 и VS1 применить мощный оптосимистор или так называемое «твердотельное реле», которое по сути дела представляет собой либо мощный оптосимистор, либо схему, представляющую собой оптопару с ключом переменного тока на мощных высоковольтных полевых транзисторах.

Читайте также:  6п3с какое анодное напряжение лучше

Микросхему LM3914 можно заменить другой аналогичной, например, LM3915 или LM3916, но нужно принять во внимание, что, используя микросхему с логарифмической шкалой соответствия получаем и логарифмически неравномерные ступени. Хотя с этим можно мириться, скомпенсировав этот недостаток более тщательной регулировкой входного делителя, более тщательно наблюдая за пределами диапазона «нормальности» напряжения. И без ЛАТРа здесь уже не обойтись.

Источник

Изолированная схема контроля напряжения сети переменного тока

На Рисунке 1 изображена схема недорогого устройства, измеряющего уровень напряжения в сети переменного тока и, кроме того, имеющая еще ряд полезных применений. Анализ этой схемы весьма прост. Когда переменное напряжение на входе VIN положительно относительно нейтрального провода, оно оказывается приложенным к цепочке элементов R1, R2, D1 и к светодиоду оптоизолятора IC1. Ток через эту цепь проходит тогда, когда напряжение достаточно высоко для того, чтобы включить стабилитрон D1 и светодиод оптрона. Напряжение открывания этой пары диодов назовем напряжением разрешения и обозначим VE. Напряжение пробоя стабилитрона и прямое падение напряжения на светодиоде оптрона равны, соответственно, 47 В и 1.2 В, что в сумме дает 48.2 В. При любом напряжении, не достигшем этого значения, уровень выходного напряжения оптрона будет высоким. Когда напряжение превысит напряжение разрешения, транзистор оптоизолятора откроется и переключит выход в низкое состояние. В таком состоянии выход будет оставаться до тех пор, пока входное напряжение вновь не опустится ниже порога разрешения.

Рисунок 1. Ширина импульса на выходе этого простого монитора напряжения сети
переменного тока пропорциональна уровню входного напряжения.

В результате на выходе схемы будут формироваться прямоугольные импульсы с постоянной длительностью tTOTAL, определяемой временем, в течение которого VIN превышает напряжение разрешения VE (Рисунок 2). Если входное напряжение изменится от 120 до 144 В, прямоугольные импульсы станут шире, если напряжение упадет, ширина импульсов уменьшится. Чтобы вывести формулу для этой схемы, будем считать форму входного сигнала косинусоидальной.

Рисунок 2. Временные диаграммы сигналов схемы.

Поскольку в нулевой момент времени входное напряжение максимально, оптоизолятор в это время открыт, и его выходное напряжение имеет низкий уровень, который сохраняется до тех пор, пока напряжение на входе не опустится ниже порога разрешения. Следующая формула позволяет определить момент tON наступления этого перехода:

В связи с тем, что функция косинуса симметрична относительно нуля, время tON составляет половину общего времени tTOTAL, в течение которого выходное напряжение имеет высокий уровень. Входы таймеров подавляющего большинства современных микроконтроллеров способны работать в режиме захвата, поэтому простейшим способом определения входного напряжения будет измерение ширины импульса как функции от амплитуды входного сигнала и вычисление VIN по следующей формуле

Преобразовать на основании этой формулы длительность импульса во входное напряжение можно как программно, так и с помощью просмотровой таблицы. Не забывайте, что в формулах мы оперировали пиковыми значениями напряжений, так что при необходимости вам потребуется перевести их в среднеквадратичные значения. Эту схему, частота выходного сигнала которой не зависит от коэффициента заполнения и равна 60 Гц, вы можете использовать в качестве источника синхронизации или для измерения времени. Потенциально ее можно использовать и в драйверах для привязки переключения нагрузки к моментам пересечения нуля, если, основываясь на измеренном напряжении, экстраполировать сигналы схемы назад во времени, так как фронты импульсов смещены относительно реального пересечения нуля.

Следует обратить внимание также на следующее. D2 защищает светодиод оптрона во время отрицательной полуволны входного напряжения. В большинстве случаев на светодиод оптоизолятора это влияния не оказывает, поскольку обратный ток схемы гарантирует, что допустимое обратное напряжение светодиода превышено не будет. Тем не менее, лучшим способом ограничения напряжения на входе оптоизолятора является включение параллельного диода. Добавление этого диода увеличивает ток потребления схемы более чем вдвое, и, ввиду того, что этот ток течет из сети, он может создавать проблемы в отношении мощности, рассеиваемой резисторами на входе схемы.

Если вам требуется более высокая точность оценки входного напряжения, с помощью некоторых усовершенствований характеристики схемы можно улучшить. Основным источником погрешности является стабилитрон, напряжение стабилизации которого имеет разброс 5%. Эти 5% могут порождать весьма значительную ошибку определения входной амплитуды. Улучшить точность схемы можно выбором более точного стабилитрона, или же калибровкой каждой платы путем подачи на ее вход известного напряжения и записи этих параметров в память в качестве постоянных коэффициентов.

Перевод: AlexAAN по заказу РадиоЛоцман

Источник

Что такое реле контроля напряжения и для чего его используют в домах и квартирах

Реле напряжения применяется для защиты бытовой техники от скачков в сети. Использование устройства заметно снижает риск выхода из строя дорогостоящей аппаратуры. Пригодится РН и для правильного функционирования промышленных агрегатов.

Для чего нужно реле контроля напряжения

Бытовые электроприборы рассчитаны на напряжение 220-240 В. Периодически в электросети возникают нештатные ситуации. Напряжение в розетке прыгает в большую или меньшую сторону. Скачки способны нарушить работу бытовой техники или вовсе вывести ее из строя.

Перепады напряжения в сети

Распространенный случай перепадов напряжения — это обрыв нуля. При этом на одной фазе напряжение падает ниже допустимого уровня. На другой, наоборот, происходит существенное превышение вольтажа вплоть до 380в.

Другая ситуация свойственна старым домам с плохой электропроводкой и разболтавшимися контактами. Из-за плохого состояния кабелей и их перегрузки напряжение в розетках способно упасть до 170 В и ниже. Это опасно для электрических двигателей стиральных машин и холодильников.

На защиту электроприборов встает реле контроля напряжения. Это небольшое устройство располагается в распределительном щитке квартиры. Оно имеет компактную конструкцию, удобно крепится на дин рейку и выполняет свою задачу полностью автономно.

Читайте также:  Причины уменьшения напряжения генератора параллельного возбуждения при увеличении тока нагрузки

Дополнительная информация. Нужно отличать реле контроля напряжения от всевозможных стабилизаторов и УЗМ. Все перечисленные устройства применяются для защиты бытовой техники. Стабилизатор — прибор активный. Он способен самостоятельно корректировать напряжение в квартире. РН выполняет более простую и пассивную функцию. Оно просто отключает потребителя при превышении допустимого порога и, само по себе, на вольтаж никак не влияет.

Назначение кнопок и выводов

На передней панели стандартного реле ограничения напряжения имеется 3 контакта. Они предназначены для подключения нулевого и фазных проводников. Если смотреть слева направо, то контакты имеют следующее назначение:

  1. Общий нулевой провод. Этот контакт бывает раздвоен на 2 точки.
  2. Вход питающего напряжения. К нему подключается фаза, идущая от счетчика.
  3. Выход на квартиру. Этот провод отключится при скачке или просадке напряжения.

Выводы 2 и 3 — это нормально разомкнутые силовые контакты. Если напряжение между 1 и 2 находится в пределах нормы, то 2 и 3 замкнуты, и фаза может свободно проходить в сеть квартиры.

Реле контроля напряжения имеет простой принцип работы. Внутренний контроллер непрерывно измеряет напряжение в сети. Если оно выходит за пределы нормы, то электромагнитное реле отключает квартиру. Устройство цифровое. Оно срабатывает как на чрезмерно высокий вольтаж, так и на заниженный.

Задержка времени включения

Для РН свойственна задержка включения. Если вольтаж провалился ниже допустимой нормы, то устройство выключится и разорвет контакты 2 и 3. Когда напряжение снова входит в норму, реле не включается. Оно выжидает некоторое время. Например, 15 секунд. Это необходимо, чтобы избежать ложных включений РН. Регулятор для настройки этого параметра предусмотрен на передней панели устройства.

На корпусе реле имеются кнопки с дисплеем. Они позволяют настроить диапазон рабочего напряжения и время задержки срабатывания. Подробная информация о настройке прибора содержится в руководстве по эксплуатации.

Технические параметры

К основным характеристикам РН относится рабочее напряжение, количество подключаемых фаз и максимальная пропускная мощность. Ниже рассмотрены параметры одного из популярных реле — RV-32.

Характеристика Значение
Питающее напряжение 220 В
Максимальная активная мощность потребителя 7 кВт
Предельный ток нагрузки 32 А
Погрешность измерений +/-1 %
Степень защиты от пыли и влаги IP20
Количество рабочих циклов реле 100 тыс.
Рабочая температура от -5 до+40°C
Предельное сечение подключаемых проводов 6 кв. мм

Из характеристики следует, что реле питается от сетевого напряжения 220 В. Внутренние контакты способны длительно пропускать ток, равный 32 А, что соответствует потребителю мощностью 7 кВт. Класс IP 20 говорит, что устройство непригодно для работы во влажном помещении или на улице. Его допустимо устанавливать в специальный электрический щит. 100 тыс. рабочих циклов — это количество включений и отключений реле, которые оно способно перенести без разрушения.

Реле напряжения DigiTOP Vp-50A IP20

Виды РН

В защите от скачков вольтажа нуждаются различные типы приборов. Некоторые из них работают от бытового напряжения 220 В и потребляют минимальную мощность. К примерам таких устройств относятся зарядные устройства для смартфонов или led лампочки. Другие так же работают от 220 В, но потребляют уже тысячи ватт мощности, например, электрические чайники и утюги. Третьи устройства требуют трехфазного питания 380 В. Обычное однополюсное РН им не годится. Среди таких потребителей промышленные станки и мощные асинхронные двигатели. Поэтому все реле для контроля напряжения принято разделять по типу корпуса и виду нагрузки.

По типу корпуса

Данная классификация указывает на то, какие приборы и в каком количестве возможно подключить к реле. По типу исполнения РН подразделяется на 3 вида:

  • розеточные;
  • в виде удлинителя;
  • с установкой на din рейку.

Первый тип наиболее прост с точки зрения использования. Данное реле защиты от перенапряжения подключается непосредственно в розетку. С одной стороны корпуса имеется соответствующий разъем в виде штепсельной вилки. На другой части прибора расположена стандартная розетка для подключения нагрузки. Подобный тип РН можно быстро снять и подключить в другое место.

Второй тип выполнен в виде удлинителя. На его поверхности имеется несколько розеток для нагрузки. В отличие от 1-го типа данное реле оснащено кабелем с вилкой. Прибор удобен для стационарного подключения офисной техники.

Третий тип наиболее профессиональный. РН устанавливается в щиток. Оно имеет расширенный список функций, высокую пропускную мощность, и одновременно защищает все электрические приборы в квартире.

По количеству фаз

Электрические потребители, работающие от переменного тока, подразделяются на 2 группы. Подобное деление имеет и реле контроля напряжения. А именно:

Однофазная модификация пригодна для дома. Эти реле устанавливаются в квартирах, гаражах и дачах. Они пропускают через себя одну фазу и ноль. Поэтому их называют однофазными.

Рабочее напряжение для подобных РН составляет 220в. Их контакты рассчитаны на ток в 30-40 А, что соответствует максимальным значениям для квартирной проводки. Устройство имеет минимальный перечень настроек и, если почитать инструкцию, пригодно для пользования обычным человеком без профильного образования.

Второй вид реле сложнее. Он контролирует вольтаж одновременно на 3 фазах. Подобная модификация годится для агрегатов, потребляющих от сети 380 В. Реле имеет расширенный перечень регулировок и требует минимальный опыт в настройке систем автоматики.

Распространенные схемы подключения

Отличия существуют и в мощности потребителей, которые подключаются через РН. Одним достаточно для питания фазы и нуля. Другие требуют трехфазное питание. Для каждой категории мощности нагрузки необходима соответствующая схема подключения реле. Поэтому принято выделять 3 способа включения этих защитных устройств:

  • однофазное РН;
  • трехфазное;
  • схема подключения через контактор.

Подключение однофазного РН

Схема применяется для подключения потребителей на 220 В. Она пригодна как для квартиры, так и для отдельного устройства.

Первоначально имеется однофазное РН, питающая и отходящая линии. Монтаж схемы производится по нижеизложенному плану:

  1. Подключается общий нулевой провод. Соответствующая клемма имеется на реле. Она обозначается буквой «N». В зависимости от модели прибора нулевых клемм может быть и две. В таком случае на один контакт подключается ноль от питающей линии, а на другой от отходящей.
  2. Затем подсоединяется фазный провод отходящей линии. На корпусе прибора эта клемма имеет маркировку «L2», «выход L» или «out L».
  3. Третий этап — подключение фазного провода питающей линии. Напряжение на нем присутствует всегда и независимо от того, сработало РН или нет. В стандартном электрощите этот проводник идет от выхода прибора учета или дифавтомата.
Читайте также:  7550 1 стабилизатор напряжения аналоги

Схема для трехфазного реле контроля напряжения

Разные модели трехфазных реле контроля напряжения имеют отличающийся набор клемм для подключения проводов. В стандартной комплектации их 8. Клеммы напряжения сети (4 шт.) нужны для подачи в устройство трех контролируемых фаз и нуля. На корпусе прибора они обозначаются L1, L2, L3 и N. Выходные релейные клеммы (4 шт.) используются для подключения последующих устройств защиты и автоматики. Они имеют маркировку «NO» у нормально открытых контактов, и «NC» у нормально закрытых.

Схема подключения собирается в 2 этапа:

  1. К клеммам РН подключаются фазные и нулевые провода питающей линии. Здесь необходимо обратить внимание на максимальный допустимый ток контактов. Как правило, если потребитель трехфазный, то он потребляет большие мощности. Реле должно быть рассчитано на эти значения.
  2. К релейному выходу подключаются последующие устройства. Например, контактор, различные устройства сигнализации или индикаторные лампы «авария».

Обратите внимание! Дорогостоящие трехфазные РН способны контролировать не только напряжение, но и ряд других параметров сети. Например, критический перекос фаз и правильность их чередования. Эти функции важны для правильной работы асинхронных двигателей и тиристорных преобразователей.

Подключение нагрузок свыше 100 кВт с помощью контактора

Некоторые потребители электроэнергии берут от сети токи в сотни ампер. Никакое РН не способно справиться с такими мощностями. В этой ситуации используют отдельный контактор. Его необходимо соединить с выходным реле.

В этой схеме РН просто контролирует состояние сети и формирует слаботочный сигнал управления для контактора. Его втягивающая катушка подключается последовательно с выходом реле контроля напряжения. Основной ток нагрузки протекает непосредственно через контактор.

Важно! Не следует ставить РН рядом с мощными источниками радиопомех, например, трансформаторами или беспроводными телефонами. Испускаемые ими помехи способны повлиять на измерительную цепь реле и привести к ложным срабатываниям.

Рекомендации по выбору

Из вышесказанного вытекает, что существует множество видов реле контроля напряжения. Подбор осуществляется с учетом конкретной ситуации, в которой РН предстоит работать. Наиболее значимые критерии выбора реле контроля напряжения таковы:

  1. Однофазная или трехфазная сеть. Практикуется вариант, когда вместо одного трехфазного реле устанавливается 3 однофазных.
  2. Тип исполнения реле. Подключаемые к розетке, рассчитаны на 1-3 потребителя. Они выдерживают ток до 16 А. Модификации под DIN рейку мощнее. Через них возможно подключить всю квартиру. Пропускаемый ток составляет 40-80 А.
  3. Допустимый ток реле. Для обычной квартиры подойдет прибор, способный пропускать 30-40 А. Этот ток больше, чем позволит сечение бытовой проводки, но РН лучше брать с запасом по мощности в 1,5-2 раза. Так устройство прослужит заметно дольше.
  4. Если реле приобретается для подключения одиночного бытового прибора, то перед покупкой следует узнать какой у него потребляемый ток. В этой ситуации достаточно делать запас в 30-50%.

Дополнительная информация. Существуют реле контроля напряжения, оснащенные встроенным амперметром. Эти приборы позволяют отслеживать потребляемый квартирой ток. На них возможно организовать защиту от короткого замыкания или перегрузки сети.

Настройка порогов срабатывания РН

Настройка реле защиты от перенапряжения производится после анализа текущего состояния электросети и проводки. Необходимо обратить внимание на такие факторы, как:

  1. Напряжение в розетке. Оно составляет 220 В только на страницах учебников. Реальный вольтаж в сети способен находиться в пределах 190-240 В. Бессмысленно настраивать РН на отключение при снижении до 210 В, если в розетке вольтаж редко поднимается выше 200 В. Особенно актуально для сельской местности и в частном доме.
  2. Мощность бытовых приборов. Некоторые образцы техники в момент запуска потребляют большие токи, что резко понижает напряжения в сети. Этот провал необходимо учитывать, чтобы выбрать нижний порог срабатывания защиты.
  3. В ночное время суток происходит обратное. Люди спят. Большая часть электроприборов в доме выключена. Напряжение в сети способно зашкаливать до 230-240 В. Это явление учитывается при выборе верхнего номинала срабатывания.

Монтаж и настройка реле напряжения

Проверка РН с помощью мультиметра

Полноценные испытания удастся провести при помощи специального оборудования в электротехнической лаборатории. Однако точность показаний выходного вольтажа получится проверить и обычным мультиметром. Прибор необходимо переключить в режим измерения переменного напряжения до 700 В. На переключателе это обозначается как «ACV 700».

Затем мультиметром предстоит определить напряжение на выходе РН, и сравнить это значение с показаниями на дисплее защитного устройства. Нужно понимать, что оба прибора имеют некоторую погрешность измерения. Показания должны примерно совпадать. Разница в 2-3 В — это не повод для паники. Но если отличия более существенны, то в РН есть неисправность.

Применение РН защитит бытовые электроприборы от перепадов напряжения. Для этого потребуется правильно подобрать уставки его срабатывания. Ориентировочные значения можно посмотреть в паспорте на устройство.

Реле контроля напряжения выбирается с учетом количества питающих фаз и максимальной мощности потребителя. Желательно приобретать защитное устройство с запасом по току в 20-30 %. Если необходимо контролировать потребляемый ток, то лучше установить прибор со встроенным амперметром.

Источник

Оцените статью
Adblock
detector