Курсовая работа по стабилизатору напряжения

Стабилизаторы напряжения и тока — курсовая работа (Теория) по информатике и телекоммуникациям

  • Тип: Курсовая работа (Теория)
  • Предмет: Информатика и телекоммуникации
  • Все курсовые работы (теория) по информатике и телекоммуникациям »
  • Язык: Русский
  • Автор: SamLab.ws
  • Дата: 9 сен 2010
  • Формат: RTF
  • Размер: 149 Кб
  • Страниц: 15
  • Слов: 1728
  • Букв: 10803
  • Просмотров за сегодня: 2
  • За 2 недели: 16
  • За все время: 444

Тезисы:

  • Начертить принципиальную электрическую схему стабилизатора напряжения.
  • Начертим принципиальную электрическую схему стабилизатора напряжения (рис.4) .
  • Проектирование и расчет стабилизатор напряжения последовательного типа…..….6.
  • Задаемся напряжением |UКЭ3| = 8,9 В

Похожие работы:

342 Кб / 26 стр / 2641 слов / 17459 букв / 24 фев 2020

2 Мб / 42 стр / 3434 слов / 23018 букв / 23 июн 2015

184 Кб / 10 стр / 954 слов / 7240 букв / 11 янв 2015

568 Кб / 13 стр / 1494 слов / 9537 букв / 12 фев 2015

36 Кб / 17 стр / 1966 слов / 13215 букв / 1 янв 2012

169 Кб / 61 стр / 8735 слов / 47951 букв / 21 июн 2015

159 Кб / 13 стр / 1043 слов / 6057 букв / 2 мая 2018

1 Мб / 25 стр / 4782 слов / 31824 букв / 16 июл 2013

112 Кб / 18 стр / 983 слов / 5791 букв / 20 сен 2014

363 Кб / 38 стр / 4997 слов / 34433 букв / 28 окт 2014

Актуальные курсовые работы (теория) по информатике и телекоммуникациям

Электронная библиотека студента StudentLib.com © 2016-2020

На этой странице Вы можете скачать бесплатно курсовую работу (теория) по информатике и телекоммуникациям на тему «Стабилизаторы напряжения и тока»

Источник

Стабилизаторы напряжения

Виды стабилизаторов: постоянного тока (линейный и импульсный) и переменного напряжения (феррорезонансный и современный). Основные типы современных стабилизаторов: электродинамические, сервоприводные (механические), электронные, статические, релейные.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

на тему: Стабилизаторы напряжения

Современная аппаратура, начиная от привычных устройств (телевизоров, бытовых приборов и пр.) до промышленных устройств,используемых в промышленности, медицине, измерительных и счетных устройств, предъявляет жесткие требования к постоянству питающих напряжений.

Напряжение промышленной сети может колебаться в значительных пределах.

Помимо этого, даже при малых колебаниях напряжения сети, напряжение на зажимах потребителя может измениться в значительной степени из-за изменения нагрузки,так так любая сеть обладает внутренним сопротивлением.

Для того, чтобы устранить данные проблемы, мешающие стабильной работе, используют устройства, получившие название Стабилизаторы напряжения.

стабилизатор ток напряжение переменный

Нормальная работа большинства радиоустройств невозможна без стабилизации напряжения питания или тока нагрузки в заданных пределах. Например, радиовещательные и связные радиостанции допускают нестабильность питающего напряжения до 2-3%. Ток в фиксирующих катушках телевизионной аппаратуры должен стабилизироваться в пределах 0,5-1%.

Чем чувствительнее прибор, чем точнее измерительно устройство, тем выше должна быть стабильность источников питания. Так, для электронного микроскопа величина нестабильности питающих напряжений не должна превышать 0,005%, а усилители постоянного тока и некоторые измерительные приборы высокого класса точности допускают нестабильность напряжений не более 0,0001%.

Напряжение сети, ток нагрузки, сопротивление нагрузки могут изменяться не только медленно (в течение нескольких часов), но и очень быстро (скачком), поэтому устройство, поддерживающее величину питающего напряжение или тока в заданных пределах, должно действовать непрерывно и автоматически. В качестве таких устройств применяются стабилизаторы напряжения или тока. Дестабилизирующими факторами могут быть также: окружающая температура, влажность, частота тока питающей сети и др. Однако основные причины нестабильности — это колебания входного напряжения и сопротивления нагрузки.

Стабилизаторы подразделяются в зависимости от рода напряжения (тока) на стабилизаторы переменного напряжения (тока) и стабилизаторы постоянного напряжения.

Кроме того, стабилизаторы подразделяются на стабилизаторы параметрические и компенсационные. В качестве параметрических стабилизаторов используются нелинейные элементы. Стабилизация напряжения в таких стабилизаторах осуществляется за счет нелинейности ВАХ используемого элемента.

В параметрических стабилизаторах постоянного напряжения в качествее нелинейных элементов применяются кремниевые или газоразрядные стабилизаторы.

Компенсационные стабилизаторы напряжения представляют собой замкнутую систему автоматического регулирования с отрицательной ОС. Эффект стабилизации в данных устройствах достигается за счет изменения параметров управляемого прибора, называемого регулирующим элементом, при воздействии на него сигнала ОС.

В зависимости от типа управляемого прибора компенсационные стабилизаторы делятся на ламповые, транзисторные, тиристорные, дроссельные и комбинированные.

В зависимости от способа включения регулирующего элемента относительно сопротивления нагрузки ламповые и транзисторные стабилизаторы постоянного напряжения делятся на параллельные и последовательные. По режиму работы регулирующего элемента стабилизаторы постоянного напряжения делятся на стабилизаторы с непрерывным регулированием и импульсные.

В некоторых случаях стабилизаторы включают в себя несколько регулирующих элементов разного типа, например, транзистор и дроссель, транзистор и тиристор и т. д. Такого вида стабилизаторы относятся к стабилизатор комбинированного типа.

Стабилизаторы переменного напряжения характеризуются дополнительными параметрами, а именно, стабильностью выходного напряжения в зависимости от частоты питающего напряжения, коэффициентом мощности, искажением формы кривой выходного напряжения.

Читайте также:  Напряжение в сети частный сектор

Компенсационные стабилизаторы постоянного напряжения с непрерывным регулированием могут быть выполнены как на электронных лампах, так и на транзисторах.

Эти стабилизаторы представляют собой систему автоматического регулирования и обеспечивают постоянство выходного напряжения с высокой степенью с высокой степенью точности при изменении напряжения сети и тока нагрузки, а также и при иных внешних возмущениях (частота тока питающей сети, характер нагрузки, параметры среды — температура, влажность и т. д.)

Стабилизаторы могут быть выполнены как с последовательным, так и с параллельным включением регулирующего элемента относительно нагрузки.

В последовательной схеме регулирующий элемент включен последовательно с нагрузкой, и компенсация осуществляется за счет изменения падения напряжения на самом регулирующем элемента в параллельной схеме регулирующий элемент 2 включен параллельно с нагрузкой, а уровень выходного напряжения поддерживается за счет и тока через регулирующий элемент, в результате чего изменяется падение напряжения на гасящем сопротивлении 5, включенном последовательно с нагрузкой.

Схема с параллельным включением регулирующего элемента применяется ограниченно и используется преимущественно при импульсных изменениях тока нагрузки. Стабилизаторы с последовательным включением регулирующего элемента обладают более высоким КПД, чем стабилизаторы параллельной схемы, и применяются очень широко.

Данные стабилизаторы такого типа широко применяются для питания радио аппаратуры и аппаратуры связи.

В качестве параметрического стабилизатора переменных напряжений может быть использован нелинейный элемент с малым динамическим сопротивлением. Таким элементом является дроссель с насыщенным сердечником.

Простейший параметрический стабилизатор состоит из дросселя с ненасыщенным сердечником и дросселя с насыщенным сердечником. Параллельно насыщенному дросселю включается сопротивление нагрузки.

Модели производятся как в однофазном (220/230 В), так и трёхфазном (380/400 В) исполнении, мощность их от нескольких сотен ватт до нескольких мегаватт. Трёхфазные модели выпускаются двух модификаций: с независимой регулировкой по каждой фазе или с регулировкой по среднефазному напряжению на входе стабилизатора.

Выпускаемые модели также различаются по допустимому диапазону изменения входного напряжения, который может быть, например, таким: ±15%, ±20 %, ±25 %, ±30%, ?25%/+15%, ?35%/+15% или ?45%/+15%. Чем шире диапазон (особенно в отрицательную сторону), тем больше габариты стабилизатора и выше его стоимость при той же выходной мощности.

Ещё одним важным параметром является точность стабилизации выходного напряжения. Точность современных стабилизаторов напряжения колеблется в диапазоне от 0,5% до 8%. Точности в 8% вполне хватает для обеспечения исправной работы подавляющего большинства современной бытовой и промышленной электротехники оборудованных инверторными и импульсными блоками питания. Так как мощность оборудования напрямую зависит от напряжения, то для обеспечения корректной (заявленной производителем) работы с прогнозируемым результатом и расходом электроэнергии необходимо точное напряжения (0,5-1%). Так же более жесткие требования (1%) предъявляются для питания сложного оборудования (медицинское, высокотехнологичное и подобное). Важным потребительским параметром является способность стабилизатора работать на заявленной мощности во всем диапазоне входного напряжения, но далеко не все стабилизаторы соответствуют этому параметру. КПД электродинамических и сервоприводных стабилизаторов более 98%, а электронных (ступенчатых) 96%.

Обширность типов и модификаций стабилизаторов напряжения дало возможность применять стабилизаторы, как на производстве, так и в быту. Использование их позволило не только обеспечивать стабильное питание у электроприборов, но и уберечь большинство устройств от поломки.

Список используемой литературы

В.В. Китаев и др «Электропитание устройств связи.»

Вересов Г.П. «Электропитание бытовой радиоэлектронной аппаратуры.»

Костиков В.Г. Парфенов Е.М. Шахнов В.А. «Источники электропитания электронных средств. Схемотехника и конструирование: Учебник для ВУЗов

Подобные документы

Повышение устойчивости питающего напряжения посредством применения специальных стабилизаторов напряжения. Изучение принципа действия параметрических и компенсационных стабилизаторов постоянного напряжения, определение и расчет их основных параметров.

лабораторная работа [1,8 M], добавлен 12.05.2016

Расчет выпрямителей с емкостной реакцией нагрузки. Методика расчета ключевых стабилизаторов напряжения. Программные средства моделирования схем источников вторичного электропитания. Алгоритмы счета и программная реализация стабилизаторов напряжения.

дипломная работа [704,4 K], добавлен 24.02.2012

Импульсные стабилизаторы постоянного напряжения. Разработка импульсного стабилизатора напряжения понижающего типа и его принципиальной схемы. Расчет силовой части, коэффициента полезного действия. Структура блока управления, требования к его узлам.

курсовая работа [74,9 K], добавлен 29.09.2011

Электронные устройства для преобразования энергии переменного тока в энергию постоянного тока. Классификация выпрямителей, их основные параметры. Работа однофазной мостовой схемы выпрямления. Диаграммы токов и напряжений двухполупериодного выпрямителя.

реферат [360,2 K], добавлен 19.11.2011

Источник питания как устройство, предназначенное для снабжения аппаратуры электрической энергией. Преобразование переменного напряжения промышленной частоты в пульсирующее постоянное напряжение с помощью выпрямителей. Стабилизаторы постоянного напряжения.

реферат [1,4 M], добавлен 08.02.2013

Особая точность электродинамических приборов, их разновидности и применение для определения тока и напряжения в цепях переменного и постоянного тока. Принцип действия ваттметра, устройство магнитоэлектрического логометра, их распространение и применение.

реферат [511,9 K], добавлен 25.11.2010

История высоковольтных линий электропередач. Принцип работы трансформатора — устройства для изменения величины напряжения. Основные методы преобразования больших мощностей из постоянного тока в переменный. Объединения элетрической сети переменного тока.

отчет по практике [34,0 K], добавлен 19.11.2015

Источник

Курсовая работа: Система управления стабилизатором напряжения

Федеральное агентство по образованию

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ

Пояснительная записка к курсовому проекту

по дисциплине Электронные цепи и микросхемотехника

Система управления стабилизатором напряжения

При выполнении курсового проекта была разработана система управления источником питания, мощностью до 180 Вт, с широтно-импульсным способом регулирования. В данной пояснительной записке описан принцип работы устройства, представлены расчет силовой части схемы, а также системы управления. К пояснительной записке прилагается электрическая принципиальная схема источника питания и диаграммы работы.

1. Год завершения работы: 2007 г.

6. Источников литературы: 5

ЗАДАНИЕ на курсовое проектирование по дисциплине «Электронные цепи и микросхемотехника»

группа №374 факультет электронной техники

Тема проекта: Электронные цепи и микросхемотехника

Срок сдачи студентом законченного проекта 01.11.2007 г.

Исходные данные к проекту:

Напряжение сети:

Мощность нагрузки:

Напряжение нагрузки:

Частота преобразования:

Точность стабилизации:

Предельные параметры защиты:

Содержание пояснительной записки (перечень подлежащих разработке вопросов):

1. Разработка схемы управления;

2. Расчет силовой части схемы;

3. Расчет защиты по напряжению и по току;

4. Расчет источника питания системы управления;

Перечень графического материала (с точным указанием обязательных чертежей и схем):

1. Схема электрическая функциональная: ФЭТ КП.01ХХХ.004.Э2;

2. Схема электрическая принципиальная: ФЭТ КП.01ХХХ.004 Э3;

Содержание

1. Составление функциональной схемы стабилизатора напряжения

2. Составление принципиальной электрической схемы

3. Принцип работы силовой части и системы управления

Введение

В настоящий момент времени очень удобно и выгодно использовать микропроцессорное устройство управления для импульсов синхронизации для источников и других устройств, вследствие дешевизны, большой интеграции, малых размеров, большой точности и стабильности микропроцессорных устройств, таких как микроконтроллеры, имеющие встроенные ШИМ, компараторы, АЦП, внутренние ИОН и генератор импульсов.

Также возможно построение системы управления данного источника на цифровых микросхемах КМОП или ТТЛШ, но такое построение будет значительно уступать микропроцессорному по размеру и простоте исполнения.

Но в рамках выполнения данного курсового проекта нам поставлена задача построить систему управления на аналоговых компонентах, которую довольно несложно представить структурно и легко готовый макет настраивать на необходимые характеристики, регулируя сопротивления переменных резисторов системы управления.

Аналоговые ключи используется в различных схематических решениях. Существуют управляемые и неуправляемые ключи, силовые и не силовые, однотактные и двухтактные. К неуправляемым аналоговым ключам относят диоды, стабилитроны, они являются однотактными; к управляемым относят транзисторы, тиристоры (однотактные), параллельное соединение диода и коллекторно–эмиттерного перехода транзистора, симисторы (двухтактные). Разделение на силовые и не силовые ключи происходит по рассеиваемой им мощности. Силовые полупроводниковые ключи имеют большие габариты и требуют интенсивного теплоотвода.

В импульсных источниках применяются три способа регулирования: широтно-импульсный (ШИМ), при котором период коммутации постоянен, а время нахождения транзистора в области насыщения (отсечки) изменяется; частотно-импульсный (ЧИМ), при котором период коммутации не постоянен, а время нахождения транзистора в области насыщения (отсечки) постоянно; двухпозиционный (релейный), при котором и период, и относительное время, когда транзистор находится в области насыщения отсечки, изменяются. В данном курсовом проекте применен широтно-импульсный способ регулирования.

1. Составление функциональной схемы стабилизатора напряжения

Функциональная схема стабилизатора напряжения состоит из силовой части, непосредственно стабилизатора преобразованного напряжения из сетевого переменного в постоянное на нагрузке, и системы управления. Силовая часть стабилизатора, в свою очередь, состоит из:

— входного мостового преобразователя

— низкочастотного входного фильтра

— рекуперирующей цепи силового транзистора

— трансформатора для гальванической развязки

— выходного однотактного преобразователя

Входной бестрансформаторный выпрямитель необходим для преобразования сетевого переменного напряжения в постоянное. Мостовая схема выпрямления является наилучшей по форме выходного сигнала и требованиям к полупроводниковым элементам, диодам. Фильтр, установленный после выпрямителя, выполняет функции сглаживания сигнала. LC-фильтр, выбранный в данной работе, обладает наилучшими сглаживающими свойствами по току и напряжению. В качестве силового ключа выбран мощный биполярный транзистор, переключающийся между ключевым режимом и режимом отсечки с помощью изменения тока базы в соответствии с частотой, указанной в ТЗ. Биполярный транзистор в качестве силового ключа уступает по свойствам решениям с использованием мощных полевых МДП-транзисторов и полевых транзисторов с изолированным затвором, но в данном случае важно лишь быстродействие ключа. Так как в момент времени, когда ключ разомкнут, ток продолжает поступать от сети, то возникло необходимость в рекуперирующей ветви, включенной параллельно ключу. Данная цепь включает в себя диод и индуктивный элемент, которым является одна из вторичных обмоток сетевого трансформатора. Гальваническая развязка входного сигнала и сигнала нагрузки осуществляется с помощью трансформатора. После прохождения трансформатора сигнал имеет форму, в которой положительная часть сигнала сглаженная, а отрицательная представляет собой выброс по модулю равный амплитуде положительной части, который физическими свойствами обмоток трансформатора. Поэтому этот сигнал необходимо выпрямлять. Используется однотактный выпрямитель. Перед поступления сигнала на выход, он еще раз сглаживается LC-фильтром. Так как при однотактном преобразовании ввод в схему фильтра, содержащего индуктивность, приводит к изменению направления протекания ток в нагрузке в определенный промежуток времени на периоде, то ставится нулевой диод на входе фильтра параллельно ему.

Система управления состоит из:

— основного канала управления

— канала защиты по напряжению

Основной канал управления включает в себя задающий генератор (ЗГ), генератор линейно изменяющегося напряжения (ГЛИН), компаратора и сумматора. Основной канал управления в совокупности с каналом отрицательной обратной связи (каналом ООС) вырабатывают импульсы с частотой равной частоте преобразования, которые идут на силовой транзистор схемы. Таким образом реализуется ШИМ. Сумматор в основном канале управления нужен для сложения сигнала ШИМ, по сути состоящего из ЗГ, ГЛИН, канала ООС и компаратора, и сигналов с каналов защиты по току и напряжению. Сигнал с каналов защиты по току и напряжению поступает на сумматор основного канала только в случае превышения тока в нагрузке и напряжения питания соответственно на значение, в процентном соотношении данное в ТЗ. Сигнал с сумматора перед поступлением на силовой транзистор усиливается драйвером.

2. Составление принципиальной электрической схемы

Состав силовой части описан в п.2 настоящего отчета. Отдельные блоки системы управления требуют более конкретного описания.

Задающий генератор основного канала управления представляет собой автоколебательный несимметричный мультивибратор. Схемотехническое исполнение мультивибратора (МВ) изобилует своим многообразием. МВ возможно сделать, используя активные и пассивные дискретные элементы, трансформаторы, аналоговые и цифровые микросхемы, такие как ОУ, логические элементы И, ИЛИ; наконец возможно взять готовую микросхему мультивибратора (К155АГ и другие аналоги) или микропроцессор. В данном курсовом проекте МВ реализован на микросхемах К561ЛА7 и двух подстроечных резисторов разных номиналов и конденсатора.

ГЛИН представляет собой простейший ГЛИН на биполярном транзисторе с токостабилизирующим элементом, выполненном на биполярном транзисторе, включенном по схеме с общим эмиттером.

В качестве компараторов во всей принципиальной схеме используются микросхемы К521СА3 с открытым коллекторным выходом, выходной ток которой стабилизируется резистором, подключенным к 15-ти вольтовому питанию.

Сумматор реализован на микросхеме 4-И К155ЛИ1.

Для канала ООС обратная связь заводится с выходного делителя, параллельного нагрузке стабилизатора напряжения. Этот сигнал суммируется с помощью ОУ с сигналом, пришедшим и источника опорного напряжения (ИОН), выполненного по простейшей схеме со стабилитроном и двумя резисторами. Сигналы с канала ООС и с ШИМ сравниваются на компараторе, в результате чего на одном из входов сумматора появляется последовательность прямоугольных импульсов заданной длительности, изменяющейся в зависимости от флуктуации напряжения на нагрузке.

Для канала защиты по напряжению обратная связь заводится с делителя на выходе входного фильтра. Сигнал с делителя сравнивается на компараторе с сигналом с ИОН.

Для канала защиты по току обратная связь заводится с шунта, по которому течет ток нагрузки. Структура канала та же, что и у канала защиты по напряжению.

Усилитель мощности (УМ) построен с использованием биполярного транзистора включенного по схеме с общим эмиттером с трансформаторным выходом, поэтому в состав этой схемы входит рекуперирующая цепь. Трансформатор необходим для гальванической развязки системы управления с силовой частью стабилизатора напряжения и для дополнительного усиления тока.

3. Принцип работы силовой части и системы управления

Генератор прямоугольных импульсов выполнен на микросхеме DD1 вырабатывает импульсы прямоугольной формы. Таким образом, получаются импульсы маленькой длительности для управления генератором линейно изменяющегося напряжения (ГЛИН). ГЛИН выполнен на транзисторе VT3. Для повышения линейности возрастающего напряжения в цепи коллектора стоит стабилизатор тока, выполненный на биполярном транзисторе VT2. Резистор R13 в цепи эмиттера транзистора VT2 служит для задания тока стабилизации стабилизатора тока. Импульсы пилообразного напряжения поступают на компаратор DA4, где сравниваются с сигналом ошибки, получаемым в результате вычитания из опорного напряжения, напряжения обратной связи. Опорное напряжение снимается со стабилизатора напряжения выполненного с использованием прецизионного стабилитрона VD1 и масштабирующего УПТ. Операционный усилитель обеспечивает малую величину выходного сопротивления источника опорного напряжения. Изменяя сопротивление резистора R23, можно изменять значение опорного напряжения. Напряжение обратной связи снимается с делителя напряжения в силовой схеме. Напряжение ошибки подается на сумматор DA9, одновременно на сумматор подаётся напряжение с источника опорного напряжения, далее усиленный сигнал ошибки подаётся на DA4. Компаратор сравнивая два сигнала, выдаёт сигнал на управление схемой усилителя, собранной по схеме “общий эммитер”, который в свою очередь управляет ключом в силовой схеме. Если напряжение обратной связи увеличивается и становится больше опорного напряжения, то среднее значение разностного сигнала на выходе микросхемы DA7 увеличивается. На сумматор DD2 подаются также сигналы с каналов защиты по току и напряжению, таким образом, любой 0 на входе обрезает сигнал, идущий на силовой ключ. На рисунке 1 показаны основные временные диаграммы токов и напряжений схемы, характеризующие ее принцип работы.

Рисунок 1 – Основные временные диаграммы токов и напряжений схемы

При выполнении данного курсового проекта была разработана система управления стабилизатором напряжения, управляемым по принципу широтно-импульсного моделирования; разработаны каналы защиты от повышения тока и напряжения, источник питания собственных нужд. Были рассчитаны и выбраны из имеющихся на рынке все элементы схемы. Полученный стабилизатор напряжения удовлетворяет требованиям технического задания на курсовое проектирование.

При разработке источника питания был получен опыт по разработке схем управления вторичными источниками питания, закреплены полученные ранее знания, а также получен дополнительный опыт по расчету различных элементов электронных схем.

Список литературы

1. Семенов В.Д., Мишуров В.С. Основы преобразовательной техники: Учебное пособие.- Томск: ТМЦДО, 2001.- 132с.

2. А.И. Аксенов, А.В. Нефедов Отечественные полупроводниковые приборы: Справочное пособие.- Книга 1, издание 2-е. – «Солон-Р», 2000.- 497 с.

3. В.Д. Семенов Преобразовательная техника Часть 1: Руководство к организации самостоятельной работы.- Томск, 2005.- 45 с.

5. В.М. Саюн Электронные цепи и микросхемотехника: Руководство к выполнению индивидуального задания «Устройство с широтно-импульной модуляцией (ШИМ)».- Томск, 2006.- 28 с.

Источник

Оцените статью
Adblock
detector
Название: Система управления стабилизатором напряжения
Раздел: Рефераты по коммуникации и связи
Тип: курсовая работа Добавлен 17:42:10 06 октября 2009 Похожие работы
Просмотров: 195 Комментариев: 19 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно Скачать