Меню

Lifepo4 напряжение полного разряда

Lifepo4 аккумуляторы эксплуатация и особенности

С эксплуатацией li-ion аккумуляторов проблем нет так-как они снабжены платой защиты (BMS), которая защищает аккумуляторы от перезарядов и глубоких разрядов, а так-же балансирует ячейки между собой. Но покупая просто ячейки — не снабжённые платами защиты, многие даже не подозревают что для аккумулятора ещё что-то нужно. А ведь любые литий-ионные аккумуляторы (li-ion, lifepo4, lipo и др.) запрещено перезаряжать и разряжать ниже положенного.

Если разрядить батарейку ниже положенного, то она просто стремительно начнёт терять ёмкость и в итоге совсем перестанет заряжаться, и окончательно умрёт, причем очень быстро. А если перезарядить, то аккумулятор начнёт вздуваться из-за выделения газов внутри ячейки, и тоже начнёт терять ёмкость, и быстро умирает.

Свинцово-кислотные аккумуляторы в этом смысле более выносливые так-как от перезаряда выкипает электролит, но если перезаряд недолгий, то это особо не вредит аккумулятору, потом можно просто долить дистиллированной воды и аккумулятор будет работать дальше. А если разрядить аккумулятор менее 10 V, то аккумулятор тоже будет работать после такого, но потеряет немного ёмкости.

Литий-ионные аккумуляторы просто умирают от перезарядов и глубоких разрядов ниже положенного, по-этому очень важно не допускать критических состояний таких аккумуляторов. Для li-ion критические параметры это разряд минимум до 2.70V, и заряд до 4.20V, а для lofepo4 разряд до 2.00V, а заряд до 3,75 (3.39)V, хотя некоторые производители разрешают заряжать до 3.90V (всё зависит от конкретной «химии» в аккумуляторах.

Вообще литий-ионные аккумуляторы не любят долго находится в полностью разряженном состоянии, то-есть для lofepo4 это 2.00V, и в полностью зажженном состоянии — 3.60V. Если аккумуляторы используются в мобильных устройствах и электротранспорте, то они заряжаются полностью на 100%, так-как почти сразу после зарядки они используются, и аккумуляторы разряжаются, и как только разрядятся их снова заряжают. Но если долго держать такие аккумуляторы на зарядке, то аккумуляторы быстро теряют ёмкость и часто разбухают. Наверно некоторые сталкивались с тем что аккумулятор телефона разбухал и окончательно выходил из строя, вот это как раз из-за длительной зарядки от сети, или что бывает редко из-за выхода из строя платы защиты (BMS).

Так вот от перезаряда вздулись и мои lifepo4 аккумуляторы, они ещё живые, но походу ёмкости там уже нет.

Если литий-ионные аккумуляторы используются не в циклическом режиме работы, а в буферном (ИПБ, солнечные системы и др.), то рекомендуется понизить напряжение заряда, чтобы на ячейку приходилось не 3.60-3.90V, а 3.40-3.45V. Или использовать умные заурядные устройства или контроллеры, которые заряжают (для систем 12 V) до 14.6V, а через 10-20 минут опускают напряжение до 13.6-13.8V, что соответствует 3,40-3,45V на ячейку.

Чтобы не испортить аккумуляторы обязательно нужно установить плату защиты BMS, или хотя-бы поставить балансировочные платы. Дело в том что во время эксплуатации напряжение ячеек может разбегаться, и со временем наступит тот момент когда общее напряжение будет вроде-бы в норме 14.6V, а напряжение ячеек разное. К примеру 1яч(3.35V), 2яч(3.57V), 3яч(3.44V) 4( 4.24V). В итоге четвёртая ячейка перезаряжается и значит просто умрет, хотя общее напряжение мы не превышали.

Дисбаланс ячеек происходит из-за разности сопротивлений ячеек, или из-за плохого соединения ячеек между собой. Если ячейки отличаются по внутреннему сопротивлению, то они по разному заряжаются и разряжаются. Для устранения дисбаланса применяют балансировочные платы (балансиры), которые подключаются к каждой ячейке, и при достижении 3.60-3.75V подключается балластный резистор, который разряжает ячейку если её напряжение превысило порог срабатывания. Таким образом балансиры держат уже зарядившиеся ячейки пока не зарядятся остальные. Но просто балансиры не уберегут ячейки от перезаряда если дисбаланс будет очень сильный, а так-же балансиры никак не помогут если аккумулятор разрядится слишком глубоко ( ниже положенного).

На литий-ионные аккумуляторы нужно устанавливать полноценные BMS (Battery monagement system), которые отслеживают напряжение каждой ячейки, и если напряжение превысит критические отметки заряда или разряда, то BMS полностью отключит аккумулятор. Так-же BMS отключает аккумулятор при превышении допустимого тока и при КЗ, и так-же при заряде выполняет балансировку ячеек. В общем это полноценная защита аккумулятора, которая не даст аккумулятору перезарядится, разрядится, тем самым обеспечит ему долгую жизнь.

Перед вводом в эксплуатацию нужно предварительно отбалансировать ячейки аккумулятора, так-как они могут быть разной степени заряженности и естественно с разным напряжением. Для этого нужно все ячейки соединить параллельно, то-есть плюс с плюсом всех ячеек и минус с минусом. И так соединённые параллельно ячейки нужно полностью зарядить до 3,60V. Ниже на фото пример параллельного соединения ячеек lifepo4 для балансировки.

Если посмотреть на график Lfepo4 (ниже рисунок), то можно увидеть что основная ёмкость ячейки лежит в пределах 3.0-3.35 V, это 90% ёмкости. После 3.0V, а разряд происходит очень быстро, а основное время разряда лежит в пределах напряжения 3.3-3.0V. Так-же и заряд после напряжения 3.35V происходит очень быстро так-как аккумулятор уже практически заряжен.

Исходя из этого понятно что lifepo4 вообще не нужно заряжать до 3.60V и более, так-как аккумулятор и так заряжен почти на 100% при напряжении 3.35V. При использовании 80% ёмкости количество циклов lifepo4 3000 и более, а при 100% использования ёмкости количество циклов всего 1500-2000. При циклировании на 20-25% количество циклов до 5000-7000. Точные данные можно узнать в описании конкретных аккумуляторов.

Lifepo4 хорошо работает со стандартными зарядными устройствами и контроллерами, предназначенными для заряда свинцово-кислотных аккумуляторов, так-как напряжение для систем на 12 V 13.8-14.7V. Особенно хорошо подходят для лифера контроллеры и зарядные ус., которые осуществляют «Умный» заряд АКБ., то-есть многостадийный заряд.

Алгоритм обычно такой:
заряд аккумулятора длится пока напряжение не поднимется до 14.2-14.7 V,
далее под этим напряжением аккумулятор держится 10-20 минут,
и далее напряжение понижается до 13.6-13.8V.

Так-как Lifepo4 должен быть защищен платой защиты (BMS), его нужно заряжать до 14.4-14.7V лишь для того чтобы работала балансировка ячеек. Обычно балансировка включается при 3.60-3.75V, по-этому чтобы она работала нужно кратковременно поднимать общее напряжение аккумулятора до 14.4 V и выше ( зависит от конкретных настроек BMS). Это как-раз и делают «Умные» контроллеры и зарядные ус. — поднимают напряжение до 14.2-14.7V кратковременно, а потом опускают до 13.6-13.8V. Только нужно подбирать BMS или просто балансиры, и зарядное устройство так чтобы балансировка включалась, то-есть BMS нужна с порогом балансировки 3.60V, а зарядное ус. с напряжением заряда 14.4 V. Думаю этот важный момент понятен, смысл в том чтобы и балансировка ячеек работала, и потом напряжение немного опускалось чтобы не «Кипятить» lifepo4.

Читайте также:  При увеличении частоты напряжения индуктивность

Но все сложности эксплуатации Lifepo4 заключающиеся в установке платы BMS и соблюдении режимов заряда и разряда с лихвой перекрываются преимуществами перед свинцово-кислотными аккумуляторами. Во-первых это большое число циклов заряда/разряда, и длительный срок службы, 15-20 лет. Lifepo4 не нужно заряжать на 100%, он не теряет ёмкости от недозарядов. А так-же Lifepo4 аккумуляторы имеют очень низкое внутреннее сопротивление, которое напрямую влияет на КПД заряда/разряда. Такие аккумуляторы можно заряжать большими токами, и аккумулятор можно зарядить всего за 1 час током 1С, а вот свинцово-кислотные АКБ так зарядить не получится, их надо заряжать током 0.1С в течении 10 часов, можно чуть быстрее, но КПД от этого сильно уменьшится и закипит электролит.

Lifepo4 аккумуляторы очень стабильно держат напряжение даже под большими нагрузками, и в отличие от свинцово-кислотных АКБ напряжение Lifepo4 лишь немного просаживается под нагрузкой. Из-за этого КПД аккумулятора 95-98%, а свинцово-кислотных 60-80% (в зависимости от нагрузки). Вот к примеру если заряжать свинцово-кислотный АКБ, то его напряжение быстро поднимается до 13V и далее до 14V, в итоге в АКБ ёмкостью 240Ач мы за 8 часов зарядки вливаем примерно 13.5*240=3240ватт. А к примеру при разряде током 25А напряжение АКБ почти сразу упадет до 12,4-12.0V и мы сможем взять с АКБ при разряде до 10.0V 12.2*240=2928ватт. Получается мы просто потеряли 3240-2928=312ватт, а если разряжать АКБ к примеру инвертором и нагрузкой через него в 1кВт, то потери будут просто огромные, до 50% . А у Lifepo4 просадка напряжения минимальная даже при разряде токами в 1С и по этому КПД очень высокий.

Таким образом только на КПД мы получаем больше энергии на 20-30%, а это не мало, особенно когда ёмкость аккумуляторов киловатт десять, тогда на обычных АКБ будет теряется 2-3кВт за каждые 10кВт пришедшей в АКБ энергии, а при использовании Lifepo4 потери почти незаметны.

Если есть вопросы, то оставляйте комментарии ниже в форме «в контакте».

Источник

На Токе заряженный портал

Всё о литий-железо-фосфатных (LiFePO4, LFP) аккумуляторах — На токе

Всё о литий-железо-фосфатных (LiFePO4, LFP) аккумуляторах

На рынке сегодня присутствует не малое количество разновидностей литиевых накопителей электроэнергии, и особое место среди них занимает литий-железо-фосфатное (LiFePO4 или LFP) исполнение. Чем оно выгодно отличается от «соплеменников» и каковы его особенности? Вот именно об этом мы будем говорить в данной теме.

  • История появления.
  • Преимущества LiFePO4 электронакопителей.
  • Сравнение LiFePO4 и Li-ion — что лучше?
  • Применение LFP аккумуляторов.
  • Как правильно эксплуатировать LFP батареи.
  • Правила хранения и утилизации LiFePo4.

История появления

Итак, LiFePO4 был открыт давненько, в 1996-ом году, профессором Техасского университета Джоном Гуденафом. Материал играл роль катода для обычного Li-ion накопителя. Отличался LFP тем, что по сравнению с традиционными литий-кобальтовыми источниками энергии, имел значительное преимущество в цене, был менее токсичным и более термоустойчивым. Однако у LiFePO4 имел место и один значимый недостаток — меньшая ёмкость.

До 2003-го года разработка практически не продвигалась вперёд, пока она не попала в руки специалистов представляющих фирму A123 Systems. Кроме того, серьёзный толчок делу дали такие инвесторы как Motorola, Qualcomm и Sequoia Capital, благодаря которым технология была доведена до ума.

Первая промышленная партия изделий была выпущена в 2006-ом году и с тех пор, LFP позиционируются как лучшие из силовых электронакопителей.

LiFePO4 обходят конкурентов по таким параметрам:

1. Улучшенные характеристики.

2. Более высокий показатель КПД.

3. Повышенный уровень безопасности.

LiFePO4 предлагают пользователю более продолжительный срок службы, по сравнению со своими Li-ion собратьями. Применение фосфатов даёт возможность избежать расхода кобальта и связанных с этим экологических проблем.

Что мы имеем по техническим характеристикам LiFePO4?

Номинальное напряжение LFP — 3,0-3,3 V, нижний порог напряжения — 2 V. Полностью заряженный накопитель выдаёт 3,6-вольтовое напряжение. Аппаратура может функционировать в диапазоне -30. +60, что является весьма приемлемым результатом для сторонников круглогодичной эксплуатации индивидуального электрического транспорта.

Время зарядки LFP-батареи — 4 часа. Масса аккумулятора с характерстиками 36 V 12 Ah – 5,5 килограмма, разрядной ток — до 35 A, мощность — до 1260 Ватт, пиковая — 2160 Ватт.

Что нам предлагает ближайший конкурент LFP, традиционный Li-ion?

Номинальное напряжение тут уже повыше — 3,6-3,75 V. Нижний порог напряжения — 3 V, а для ёмких Li-ion АКБ нижний показатель — 2,5 V. Полностью заряженный агрегат выдаёт 4,25 V, у более ёмких батареек — 4,35 V. Работают при температуре -20. +60 градусов, но тут нужно учесть, что оптимальный температурный режим для литий-ионного источника энергии — +20. +25 градусов.

Время зарядки Li-ion батареи — 8 часов. Масса аккумулятора с характеристиками 36 V 12 Ah – 3 килограмма, разрядный ток — до 12 A, выдаваемая мощность — до 432 Ватт, пиковая — 864 Ватта.

Преимущества LiFePO4 электронакопителей

Скорее всего, вас не вдохновит показатель напряжения LiFePO4, но не стоит из-за этого сбрасывать данную разновидность литиевых источников питания со счетов. У них есть ряд преимуществ, которые могут заинтересовать очень многих юзеров.

1. В таких АКБ разработчики используют структуру оливина, высокотемпературного материала, который способен выдерживать температуру до 1900 градусов.

2. Продолжительный срок эксплуатации. Такая аппаратура может выдержать от двух до семи тысяч циклов. При этом, ёмкость снизится всего на 20%. А вот обычный литий-ион столько не потянет: его потенциал 500-1000 циклов разряда/заряда.

Читайте также:  Номинальное напряжение в электрической сети системы пуска трактора беларус 952

3. Срок хранения. По этому параметру LFP изделия также долгоиграющими являются. Хранить их можно 12-15 лет, а вот Li-ion — всего 3-5 лет, потом начинается деградация.

4. Повышенная плотность энергии и стойкость к низким температурным режимам. К примеру LiFePO4 модели ANR26650M1-B от A123 Systems, может работать при заявленном производителем температурном диапазоне -30. +55 градусов, а хранить её можно при -40. +60 градусах. У литий-ионной продукции просадки составляют порядка 3-4 V при нагрузке, а ёмкость снижается в два-три раза при минусовой температуре окружающей среды.

5. Устойчивость к переразряду. Если напряжение преодолеет допустимое значение, LFP грозят лишь несущественные повреждения, при которых девайс сохранит свою работоспособность. А вот Li-ion, при критическом уровне напряжения, становится весьма опасным предметом — происходит разгерметизация из-за которой в атмосферу выбрасывается литий. В этом случае вполне можно ожидать взрыва!

6. LFP не загораются при повреждении компонентов. Они в такой ситуации будут только нагреваться и испускать дым. Li-ion же при повреждении взрываются и могут напугать юзера появлением яркого пламени.

7. 3,2-вольтовое постоянное напряжение на выходе, даёт возможность соединить последовательно две пары аккумуляторов, для получения 12,8-вольтового номинального напряжения на выходе. Это приближено к напряжению свинцово-кислотных АКБ (SLA) с 6-ю ячейками. Данное обстоятельство, параллельно с достойной безопасностью источников питания LFP, делает их отличной возможной заменой SLA во многих отраслях. К примеру, автомобильная промышленность и солнечная энергетика. Тут возможно применение 3,2-вольтовых накопителей стандартного типоразмера 14500/10440, вместо пары гальванических элементов либо АКБ типоразмеров АА/ААА 1,5 V. Для это применяется один LFP электронакопитель, а на место второго компонента устанавливается вставка-проводник с идентичными размерами.

8. Если сравнивать LFP-батареи с другими литиевыми исполнениями, то они обладают довольно стабильным разрядным напряжением. На выходе напряжение остаётся близко к 3,2 V во время разряда, пока энергия аккумуляторной батареи не иссякнет на сто процентов. Это может существенно упростить корректировку напряжения в цепях или даже исключить надобность в ней.

9. LFP источники питания, обладают пониженной скоростью разряда, по сравнению с Li-ion и SLA электронакопителями.

10. LiFePO4 батареи можно встретить в формате 18650, что очень удобно. Это даёт возможность пользователям собрать источник питания практически любой формы, разместив компоненты наиболее удобным способом. Однако при одном и том же напряжении, LFP изделия будут несколько тяжелее и больше по размерам, поскольку в распоряжении ячеек разное номинальное напряжение.

11. Упрощённая система управления батареей и не сложное зарядное устройство. Большой допуск перезаряда и характеристика самобалансировки LFP-батареи, дают возможность упростить защиту аккумулятора и сбалансировать печатные платы, снизив их себестоимость. Одноступенчатый процесс зарядки позволяет применять более простой, обыкновенный источник питания для зарядки LiFePO4, чего не скажешь о литий-ионном электронакопителе, для которого требуется сложное и дорогое зарядное оборудование.

Сравнение LiFePO4 и Li-ion — что лучше?

Выше в теме я привёл основные характеристики этих разновидностей батарей, но, для большего понимания ситуации, стоит углубиться в подробности.

Сразу скажу: тут стоит отдать должное Li-ion источникам питания, так как именно они чаще всего становятся для потребителя оптимальным выбором.

Стоят они меньше, меньше у них и масса, а при щадящем режиме работы, Li-ion могут предложить юзеру около тысячи циклов. Однако если вам предстоит эксплуатировать индивидуальный электротранспорт в жёстких условиях, к примеру, ездить на электрифицированном велосипеде при минусовых температурах, то стоит отдать приоритет LiFePO4. Такие источники питания совмещают в себе все плюсы Li-ion, но у них отсутствуют их негативные стороны.

Пиковые токи нагрузки и заряда не наносят вреда ресурсу LFP аккумулятора. Кроме того, электронакопители такого типа имеют меньшую склонность к естественной деградации, предлагают минимальный саморазряд и весьма широкий диапазон рабочих температур. Обладателя LFP аккумулятора, порадует и то, что изделие может выдержать более 2000 циклов при утрате ёмкости на 20%. Так что, по выносливости и долговечности LFP-батареи переигрывают остальные литиевые исполнения. В то же время нужно учитывать, что LiFePO4 весят больше чем Li-ion и вдобавок они габаритнее.

В общем, суть такова: перед выбором литиевого энергонакопителя, чётко определитесь со своими приоритетами и условиями дальнейшего использования АКБ.

Применение LFP аккумуляторов

Системы автономного электроснабжения, в состав которых входят ветрогенераторы и солнечные батареи — вот где LFP активно используется как буферный накопитель. LiFePO4 оборудуется складская техника, поломоечные машины, гольфкары, водный транспорт, электрические велосипеды, электрические скутера, электрические автобусы и электромобили. LFP-накопители также обслуживают телефоны, планшеты и шуруповёрты.

Как правильно эксплуатировать LFP батареи

Не превышайте дозволенные параметры

Любые Li-ion электронакопители, в том числе и новые LFP изделия, довольно быстро вырабатывают свой ресурс, если разряжать их по максимуму либо длительное время удерживать на зарядке. В том случае, если источник энергии часто разряжается ниже допустимого предела, он начнёт утрачивать в ёмкости и по прошествии некоторого времени, электронакопитель будет разряжаться в ускоренном темпе. Также, от перезарядки может случиться такое недоразумение как вздутие девайса, по причине того, что внутри ячеек скапливается газ, а итогом является неприятный всем выход из строя.

Для продления срока эксплуатации LiFePO4, заряжать его рекомендуются до 3,65 V (пик 3,7 V), а разряжать не ниже показателя 2,5 V (пик 2 V).

Применяйте систему управления батареей (BMS)

Аккумуляторные батареи мобильных устройств и электрокаров, как правило, заряжаются на 100%, а затем сразу идут в работу. Однако если не отключить зарядную аппаратуру после полной «заправки», электронакопитель разбухнет и откажется продолжать дальнейшую работу. Думаете нужно в обязательном порядке тщательно следить за напряжением АКБ, чтобы она не разряжалась до минимального значения и не достигала излишнего заряда? Реально, делать это необязательно — разработчики давно решили данную проблему! Они начали ставить на каждую аккумуляторную батарею специальную защитную плату, так называемую BMS. Деталь контролирует показатели источника электроэнергии, от которого заряжается LiFePO4. Она полностью отвечает за зарядку/разрядку АКБ.

Читайте также:  Что нужно чтобы понизить напряжение с 24 до 12 вольт

Если LFP-батарея начнёт подвергаться зарядке сверх нормы, BMS организует равномерное распределение нагрузки по ячейкам. Если электронакопитель разрядится в значительной степени, контрольная плата прекратит подачу электроэнергии потребителям.

Если вы приобретаете не целую батарею, а только ячейки и игнорируете внедрение BMS, то распределение напряжения при зарядке АКБ будет неравномерным. К примеру, в вашем распоряжении аккумуляторная батарея состоящая из двух пар ячеек LFP. По ходу дела три ячейки достигают примерно одинакового уровня заряда, где-то на 3,5 V. А вот четвёртая ячейка по заряду выходит значительно выше — 4,25 V. Чем чревата такая разность? Тем, что четвёртая ячейка начнёт заряжаться сверх допустимого и даст сбой. При этом, общее напряжение при зарядке остаётся в пределах дозволенных значений.

Может случиться так, что установить BMS по каким либо причинам будет невозможно и возникает вопрос — а что делать в этом случае? Поставьте хотя бы балансировочные платы, которые помогут удерживать напряжение сбалансированным.

Но в то же время, «балансиры» ничем не помогут накопителю энергии, если все ячейки разрядятся до критического уровня либо начнут перезаряжаться. Кроме того, если расхождение в заряде ячеек будет значительным, балансировочная деталь не будет выравнивать напряжение.

Хотите по максимуму защитить LiFePO4 электронакопитель? Лучший способ сделать это, установить плату BMS, которая будет прекрасно справляться со своими прямыми обязанностями избавляя вас при этом от лишней головной боли.

Режим работы

Любую аккумуляторную батарею можно эксплуатировать в двух режимах: буферном и циклическом. Начнём с циклического режима. Вы пользуетесь мобильным устройством целый день, затем устанавливаете его на зарядку, а когда аккумулятор заряжен на сто процентов — продолжаете использовать девайс. А вот что касается буферного режима, то это когда электронакопитель постоянно подзаряжается. Буферный режим встречается в бесперебойных источниках питания. При нём напряжение аккумуляторной батареи редко снижается до критических показателей, по этой причине он проработает дольше, чем если будет функционировать в циклическом режиме.

Если хотите дополнительно продлить срок эксплуатации электронакопителя, понизьте напряжение заряда. Как правило, для LFP-батарей, это 3,40-3,45 V. Однако самый лучший вариант — свериться с теми значениями, которые рекомендует изготовитель АКБ.

Балансировка ячеек

Если вы предпочли собирать LFP-накопитель собственными силами, то перед сборкой нужно в обязательном порядке отбалансировать ячейки — 3,2-вольтовые. Ячейки не всегда являются заряженными в одинаковой степени, поэтому перед применением устройства, его рекомендуется предварительно отбалансировать. Для этого потребуется параллельно соединить каждую ячейку: «+» с «+» и «-» с «-» каждой ячейки. После состыковки зарядите ячейки до 3,65 V.

Если одна либо несколько ячеек продемонстрируют разность сопротивлений, в процессе балансировки будет происходить выравнивание напряжений между компонентами.

Для сбережения ресурса LiFePo4 важно:

1. Применять специальные ЗУ, которые предназначены для аккумуляторов LFP с обозначением конечного напряжения. Зарядки для литиевых АКБ других типов, для LiFePo4 изделий не годятся, так как у LFP более низкое рабочее напряжение.

2. Не следует оставлять источник энергии разряженным. Если последующий саморазряд повлечёт за собой критическое снижение напряжения хотя бы на одном элементе АКБ, это отрицательно скажется на ёмкости всего электронакопителя. Поэтому, если LiFePo4 почти разрядилась, её нужно как можно быстрее установить на зарядку и довести до номинального напряжения, а это 3,2 V на компонент.

3. Не допускайте разряда аккумулятора до его отключения посредством BMS и заряжайте гаджет после каждого применения. LiFePo4 не страдают от эффекта памяти, а полные циклы разряда будут только негативным образом сказываться на ресурсе девайса.

4. Заряжайте агрегат при температуре корпуса приближённой к комнатной. Если накопитель энергии был перед зарядкой на холоде, нужно сначала нагреть его до комнатной температуры. Для этого потребуется 4-5 часов пребывания в тёплом помещении.

5. Для зарядки LiFePo4 лучшим вариантом будут «умные» ЗУ либо контроллеры. Они обеспечивают подзарядку систем напряжением 12-14,6 V, а по прошествии 10-20 минут снижают напряжение до 13,6–13,8 V, то есть, до 3,4–3,45 V на каждый отдельный элемент.

Правила хранения и утилизации LiFePo4

Перед тем как отправить LFP на продолжительное хранение, зарядите его до 40-60% и поддерживайте такой уровень на протяжении всего срока хранения. Аккумулятор следует держать в сухом месте, где температурный режим не опускается ниже комнатных показателей.

Когда ваша аккумуляторная батарея полностью отработает своё, следует обратиться в специальную организацию, занимающуюся утилизацией подобного оборудования. Если вы поступите подобным образом, то можете даже заработать на этом. Но в то же время, если вы просто выбросите источник энергии LFP на свалку, ничего страшного не будет.

Чтобы вам легче было усвоить всю информацию изложенную в статье, я приведу далее несколько пунктов, которые нужно обязательно запомнить:

1. Следите за тем, чтобы напряжение LiFePo4 не опускалось ниже 2 V и не заходило за отметку 3,7 V. Что касается идеального диапазона, то это 2,5-3,65 V.

2. Если будете собирать батарею LFP самостоятельно, не забудьте про BMS.

3. Если используете АКБ в буферном режиме, понизьте её напряжение. Рекомендуемые параметры — 3,4-3,45 V.

4. Заряжать LFP нужно специальной зарядкой.

5. Перед самостоятельной сборкой электронакопителя, отбалансируйте ячейки, чтобы выровнять напряжение.

Основные преимущества LFP:

1. Продолжительный срок эксплуатации — 2000-7000 циклов заряда/разряда. При этом потеря ёмкости составляет 20%.

2. Срок хранения — 12-15 лет.

3. Может работать при широком диапазоне температур — -30. +60 градусов. Из этого можно сделать простой вывод: LFP хорошо подходят для использования зимой.

4. Не воспламеняется при повреждении компонентов.

5. Устойчивость к переразряду.

Естественно, не обошлось и без недостатков: это бОльшая по сравнению с Li-ion масса и себестоимость. Хотя уже можно обзавестись на AliexPress.

Источник

Adblock
detector