Линейное напряжение 220в где применяется

Линейное и фазное напряжение — отличие и соотношение

В этой краткой статье, не вдаваясь в историю сетей переменного тока, разберемся в соотношениях между фазными и линейными напряжениями. Ответим на вопросы о том, что такое фазное напряжение и что такое линейное напряжение, как они соотносятся между собой и почему эти соотношения именно таковы.

Ни для кого не секрет, что сегодня электроэнергия от генерирующих электростанций подается к потребителям по высоковольтным линиям электропередач с частотой 50 Гц. На трансформаторных подстанциях высокое синусоидальное напряжение понижается, и распределяется по потребителям на уровне 220 или 380 вольт. Где-то сеть однофазная, где-то трехфазная, однако давайте разбираться.

Действующее значение и амплитудное значение напряжения

Прежде всего отметим, что когда говорят 220 или 380 вольт, то имеют ввиду действующие значения напряжений, выражаясь математическим языком — среднеквадратичные значения напряжений . Что это значит?

Это значит, что на самом деле амплитуда Um (максимум) синусоидального напряжения, фазного Umф или линейного Umл, всегда больше этого действующего значения. Для синусоидального напряжения его амплитуда больше действующего значения в корень из 2 раз, то есть в 1,414 раза.

Так что для фазного напряжения в 220 вольт амплитуда равна 310 вольт, а для линейного напряжения в 380 вольт амплитуда окажется равной 537 вольт. А если учесть, что напряжение в сети никогда не бывает стабильным, то эти значения могут быть как ниже, так и выше. Данное обстоятельство всегда следует учитывать, например выбирая конденсаторы для трехфазного асинхронного электродвигателя.

Фазное сетевой напряжение

Обмотки генератора соединены по схеме «звезда», и объединены концами X, Y и Z в одной точке (в центре звезды), которая называется нейтралью или нулевой точкой генератора. Это четырехпроводная трехфазная схема. К выводам обмоток A, B и C присоединяются линейные провода L1, L2 и L3, а к нулевой точке — нейтральный провод N.

Напряжения между выводом A и нулевой точкой, B и нулевой точкой, С и нулевой точкой, — называются фазными напряжениями, их обозначают Ua, Ub и Uc, ну а поскольку сеть симметрична, то можно просто написать Uф — фазное напряжение.

В трехфазных сетях переменного тока большинства стран стандартное фазное напряжение равно приблизительно 220 вольт — напряжение между фазным проводом и нейтральной точкой, которая обычно заземляется, и ее потенциал принимается равным нулю, потому она и называется еще нулевой точкой .

Линейное напряжение трехфазной сети

Напряжения между выводом A и выводом B, между выводом B и выводом C, между выводом C и выводом A, — называются линейными напряжениями, то есть это напряжения между линейными проводниками трехфазной сети. Их обозначают Uab, Ubc, Uca, или можно просто написать Uл.

Стандартное линейное напряжение в большинстве стран равно приблизительно 380 вольт. Легко заметить в данном случае, что 380 больше 220 в 1,727 раза, и, пренебрегая потерями, ясно, что это квадратный корень из 3, то есть 1,732. Безусловно, напряжение в сети все время в ту или другую сторону колеблется в зависимости от текущей загруженности сети, но соотношение между линейными и фазными напряжениями именно таково.

Откуда взялся корень из 3

В электротехнике часто применяют векторный метод изображения синусоидально изменяющихся во времени величин напряжений и токов.

График зависимости величины проекции от времени есть синусоида. И если амплитуда напряжения — это длина вектора U, то проекция, которая меняется со временем — это текущее значение напряжения, а синусоида отражает динамику напряжения.

Так вот, если теперь изобразить векторную диаграмму трехфазных напряжений, то получится, что между векторами трех фаз одинаковые углы по 120°, и тогда если длины векторов — это действующие значения фазных напряжений Uф, то чтобы найти линейные напряжения Uл, необходимо вычислить РАЗНОСТЬ любой пары векторов двух фазных напряжений. Например Ua – Ub.

Выполнив построение методом параллелограмма, увидим, что вектор Uл = Uа + (-Ub), и в результате Uл = 1,732Uф. Отсюда и получается, что если стандартные фазные напряжения равны 220 вольт, то соответствующие линейные будут равны 380 вольт.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Особенности линейного напряжения

Электрические цепи характеризуются наличием различных типов напряжения. Линейное напряжение (ЛН) возникает между фазовыми проводами трёхфазной цепи. У всех частей (фаз) многофазной цепи характеристика тока идентична. Название цепей (шести-, трёх- или 2-фазные) обуславливаются числом фаз. Наибольшее распространение получили трёхфазные электроцепи, так как являются наиболее экономичными в сравнении с многофазными или 2-фазными. А также позволяют на одном агрегате получить ЛН и фазное напряжение (ФН).

Какое напряжение называется линейным, а какое фазным

Линейным называется напряженье между 2-мя фазами линии или когда определяется величина между 2-мя проводами различных фаз.

Напряжение между любой фазой и нулём — фазное. Оно меряется между начальной и конечной стадией фазы. Практически ФН от ЛН отличается на 58-60 процентов. То есть, величины ЛН в 1,73 раза больше величин ФН.

Трёхфазные цепи имеют 380В ЛН, что позволяет получить 220В фазного.

Отличия

Специфика ЛН — это показатель, по которому производится расчёт токов и остальных величин трёхфазной цепи. Подобная схема позволяет подключать одно- и трёхфазные контакты. Номинальное равно 380В и меняется при изменениях в ограниченной сети, к примеру, вследствие скачков.

Популярнейшей является цепь с нейтралью и заземлением. Подключение в такой системе производится по схеме:

  • к фазным проводам подсоединяются однофазные провода;
  • к 3-фазным — 3-фазные.

Типы соединений

Широта применения ЛН обуславливается его безопасностью и комфортностью разветвления цепи. Оборудование в таком случае подключается к фазному выводу, и лишь он не безопасен.

Расчёт системы несложен, при этом действуют стандартные физические формулы. Параметры ЛН сети замеряются мультиметром, а ФН — спецустройствами, например, вольтметром, датчиком тока, тестером.

  1. Разводка подобной проводки не нуждается в применении профессионального оборудования. Достаточно отвёрток, которые имеют индикаторы.
  2. Вероятность удара током очень мала. Подобное объясняется присутствующей в цепи свободной нейтралью. Соединение проводников не требует подключения 0-вого вывода.
  3. Схема подходит для всех видов тока.

Важно! К 3-фазной цепи можно подключить 1-фазную. Наоборот сделать нельзя.

Читайте также:  Калькулятор подбора сопротивления резисторов для понижения напряжения

При переключении обмоток генератора к треугольнику со звезды обуславливает увеличение в 1,73 раза величины ЛН.

Соединения в трёхфазных цепях

Важно! Сложность обнаружения повреждений в линейном соединении является немаловажным недостатком цепи, так как вследствие этого может случиться пожар.

Отличие между ЛН и ФН состоит в различии соединяемых проводов обмоток. Чтобы проконтролировать параметры ЛН и ФН потребуется импульсный стабилизатор, по-другому — линейный стабилизатор. Этот прибор даёт возможность, сохраняя показатель на одном уровне, приводить в норму напряжение, если оно резко выросло. Прибор можно подключить к контактам электорооборудования, обычной розетке.

Соотношения фазного и линейного напряжения

Соотношение между напряжением линейным и фазным составляет 1,73. То есть при ста процентах мощности ЛН, напряжение фазы будет 58%. То есть, ЛН превышает ФН в 1,73 раза и при этом стабильно.

ФН и ЛН, отличие и соотношение

Напряжение в трёхфазной цепи оценивается по параметрам линейной составляющей. Обычно оно 380 вольт и тождественно 220 вольтам фазной компоненты сети трёхфазного электротока. В электрических сетях, где имеется четыре провода, напряжение 3-фазного тока обозначается 380/220В. Это позволяет подключить к подобной сети оборудование с 1-фазным потреблением электричества 220В и мощных приборов, которые могут работать от 380В.

Универсальной и приемлемой в большинстве случаев является трёхфазная цепь 380/220В 0-вым проводом. Электроприборы, которые функционируют от однофазного напряженья 220В, могут при подсоединении к паре проводов ФН питаться от ЛН.

Электрооборудование, которое запитывается от трёхфазной сети может работать, только если имеется подсоединение одновременно к 3-м выводам различных фаз. Тогда заземление не обязательно, но если изоляционный материал провода будет повреждён, то отсутствие 0-ого значительно увеличивает опасность удара электрическим током.

Важно! При понижении ЛН меняются величины ФН. При уже выясненном значении междуфазного напряжения определить величину ФН труда не составит.

Чему равно линейное напряжение

В большей части стран мира стандартное ЛН составляет примерно 380В.

Источник

Подарки и советы

Множество идей оригинальных и приятных подарков по любому событию и на все случаи жизни

Линейное напряжение 220 вольт. Отличия линейного и фазного напряжения

Трехфазное подключение дает возможность включения в работу генераторов и электродвигателей повышенной мощности, а также возможность работы с разными параметрами напряжения, это зависит от вида включения нагрузки в электрическую цепь. Для работы в трехфазной сети надо понимать соотношение ее элементов.

Элементы трехфазной сети

Основные элементы трехфазной сети — это генератор, линия передачи электрической энергии, нагрузка (потребитель). Для рассмотрения вопроса, что такое линейное и фазное напряжение в цепи, дадим определение, что такое фаза.

Фаза — это электрическая цепь в системе многофазных электрических цепей. Началом фазы является зажим или конец проводника электричества, по которому электроток поступает в него. Экспертами всегда отличались по количеству фаз электрические цепи: однофазная, двухфазная, трехфазная и многофазная.

Наиболее часто применяется трехфазное включение объектов, которое имеет существенное преимущество, как перед многофазными цепями, так и перед однофазной цепью. Различия в следующем:

  • меньшие затраты на транспортирование электрической энергии;
  • способность создания ЭДС для работы асинхронных двигателей — это работа лифтов в многоэтажных домах, оборудования в офисе и на производстве;
  • этот вид подключения дает возможность одновременно пользоваться и линейным, и фазным напряжением.

Что такое фазное и линейное напряжение?

Фазные и линейные напряжения в трехфазных цепях важны для манипуляций в щитах электрического питания, а также для работы оборудования, питающегося от 380 вольт, а именно:

  1. Что такое фазное напряжение? Это напряжение, которое определяется между началом фазы и ее концом, на практике оно определяется между нулевым проводом и фазой.
  2. Линейное напряжение — это когда измеряется величина между двумя фазами, между выводами разных фаз.

На практике напряжение фазное отлично от линейного на 60%, иными словами, параметры линейного напряжения в 1,73 раза больше фазного напряжения. Трехфазные цепи могут иметь линейного напряжения — 380 вольт, что дает возможность получения фазного напряжения в 220 В.

В чем отличие?

Для общества понятие «межфазное напряжение» встречается в многоквартирных, высотных домах, когда первые этажи предусматриваются под офисные помещения, а также в торговых центрах, когда объекты строения подключаются несколькими силовыми кабелями трехфазной сети, которые обеспечивают напряжение 380 Вольт. Такой вид подключения дома обеспечивает работу асинхронных двигателей подъемников, работу эскалатора, промышленного холодильного оборудования.

На практике делать разводку трехфазной цепи достаточно просто, учитывая, что в квартиру идет фаза и ноль, а на офисное помещение — все три фазы + нейтральный провод.

Сложности линейной схемы подключения заключаются в трудности определения в процессе монтажа проводника, что может привести к аварии оборудования. Отличается схема в основном между фазными и линейными подключениями, соединениями обмоток нагрузки и источника электропитания.

Схемы подключения

Есть две схемы подключения источников напряжения (генераторов) в сеть:

Когда выполняется подключение «звездой», начало обмоток генератора соединены в одной точке. Оно не дает возможности увеличения мощности. А подключение по схеме «треугольник» — это когда обмотки соединяются последовательно, а именно, начало обмотки одной фазы соединяется с концом обмотки другой. Это дает способность в три раза увеличить напряжение.

Для лучшего понимания схем подключения специалисты дают определение, что такое фазные и линейные токи:

  • линейный ток — это ток, который протекает в подводнике соединения источника электрической энергии и приемника (нагрузки);

  • фазный ток — это ток, протекающий в каждой обмотке источника электрической энергии или в обмотках нагрузки.

Линейные и фазные токи имеют значение, когда есть несимметричная нагрузка на источник (генератор), это часто встречается в процессе подключения объектов к электроснабжению. Все параметры, относящиеся к линии, — это линейные напряжения и токи, а относящиеся к фазе, — параметры фазных величин.

Из соединения «звезда» видно, что линейные токи имеют такие же параметры, как и фазные. Когда система симметрична, необходимость в нейтральном проводе отпадает, на практике он поддерживает симметрию источника, когда нагрузка несимметрична.

Из-за несимметричности подключаемой нагрузки (а на практике это происходит с включением в цепь осветительных устройств) надо обеспечить независимую работу трем фазам цепи, это можно сделать и в трехпроводной линии, когда фазы приемника соединяются в треугольник.

Важно! Специалисты обращают внимание на тот факт, что когда понижается линейное напряжение, изменяются параметры фазного напряжения. Зная значение междуфазное напряжение, можно легко определить величину фазного напряжения.

Как сделать расчет линейного напряжения?

Когда выполняется разветвленная система снабжения объекта электроэнергией, иногда есть необходимость вычислить напряжение между двумя проводами «ноль» и «фаза»: IF=IL, что говорит о равности параметров фазных и линейных. Соотношение между фазными проводами и линейными можно найти, используя формулу:

Находящий элемент соотношений напряжений и оценки системы электроснабжения специалистами выполняется по линейным параметрам, когда известно их значение. В системах электроснабжения из четырех проводов выполняется маркировка 380/220 вольт.

Читайте также:  18650 напряжение меньше 1 вольта

Вывод

Используя возможности трехфазной цепи (четырехпроводниковая цепь), можно по-разному выполнять подключения, что дает возможность ее широкого применения. Специалисты считают трехфазное напряжение для подключения универсальным вариантом, так как оно дает возможность подключать нагрузку большой мощности, жилые помещения, офисные здания.

В многоквартирных домах основными потребителями являются бытовые приборы, рассчитанные на сеть 220 В, по этой причине важно сделать равномерное распределение нагрузки между фазами цепи, это достигается включением квартир в сеть по шахматному принципу. Отличается распределение нагрузки частных домов, в них она выполняется по величинам нагрузки на каждую фазу всего домашнего оборудования, токами в проводниках, проходящими в период максимального включения приборов.

Трехфазная цепь является частным случаем многофазных электрических систем, представляющих собой совокупность электрических цепей, в которых действуют ЭДС одинаковой частоты, сдвинутые по фазе относительно друг друга на определенный угол. Отметим, что обычно эти ЭДС, в первую очередь в силовой энергетике, синусоидальны. Однако, в современных электромеханических системах, где для управления исполнительными двигателями используются преобразователи частоты, система напряжений в общем случае является несинусоидальной. Каждую из частей многофазной системы, характеризующуюся одинаковым током, называют фазой, т.е. фаза – это участок цепи, относящийся к соответствующей обмотке генератора или трансформатора, линии и нагрузке.

Таким образом, понятие «фаза» имеет в электротехнике два различных значения:

  • фаза как аргумент синусоидально изменяющейся величины;
  • фаза как составная часть многофазной электрической системы.

Разработка многофазных систем была обусловлена исторически. Исследования в данной области были вызваны требованиями развивающегося производства, а успехам в развитии многофазных систем способствовали открытия в физике электрических и магнитных явлений.

Важнейшей предпосылкой разработки многофазных электрических систем явилось открытие явления вращающегося магнитного поля (Г.Феррарис и Н.Тесла, 1888 г.). Первые электрические двигатели были двухфазными, но они имели невысокие рабочие характеристики. Наиболее рациональной и перспективной оказалась трехфазная система, основные преимущества которой будут рассмотрены далее. Большой вклад в разработку трехфазных систем внес выдающийся русский ученый-электротехник М.О.Доливо-Добровольский, создавший трехфазные асинхронные двигатели, трансформаторы, предложивший трех- и четырехпроводные цепи, в связи с чем по праву считающийся основоположником трехфазных систем.

Источником трехфазного напряжения является трехфазный генератор, на статоре которого (см. рис. 1) размещена трехфазная обмотка. Фазы этой обмотки располагаются таким образом, чтобы их магнитные оси были сдвинуты в пространстве друг относительно друга на эл. рад. На рис. 1 каждая фаза статора условно показана в виде одного витка. Начала обмоток принято обозначать заглавными буквами А,В,С, а концы- соответственно прописными x,y,z. ЭДС в неподвижных обмотках статора индуцируются в результате пересечения их витков магнитным полем, создаваемым током обмотки возбуждения вращающегося ротора (на рис. 1 ротор условно изображен в виде постоянного магнита, что используется на практике при относительно небольших мощностях). При вращении ротора с равномерной скоростью в обмотках фаз статора индуцируются периодически изменяющиеся синусоидальные ЭДС одинаковой частоты и амплитуды, но отличающиеся вследствие пространственного сдвига друг от друга по фазе на рад. (см. рис. 2).

Трехфазные системы в настоящее время получили наибольшее распространение. На трехфазном токе работают все крупные электростанции и потребители, что связано с рядом преимуществ трехфазных цепей перед однофазными, важнейшими из которых являются:

Экономичность передачи электроэнергии на большие расстояния;

Самым надежным и экономичным, удовлетворяющим требованиям промышленного электропривода является асинхронный двигатель с короткозамкнутым ротором;

Возможность получения с помощью неподвижных обмоток вращающегося магнитного поля, на чем основана работа синхронного и асинхронного двигателей, а также ряда других электротехнических устройств;

Уравновешенность симметричных трехфазных систем.

Для рассмотрения важнейшего свойства уравновешенности трехфазной системы, которое будет доказано далее, введем понятие симметрии многофазной системы.

Система ЭДС (напряжений, токов и т.д.) называется симметричной, если она состоит из m одинаковых по модулю векторов ЭДС (напряжений, токов и т.д.), сдвинутых по фазе друг относительно друга на одинаковый угол . В частности векторная диаграмма для симметричной системы ЭДС, соответствующей трехфазной системе синусоид на рис. 2, представлена на рис. 3.

Рис.3 Рис.4

Из несимметричных систем наибольший практический интерес представляет двухфазная система с 90-градусным сдвигом фаз (см. рис. 4).

Все симметричные трех- и m-фазные (m>3) системы, а также двухфазная система являются уравновешенными. Это означает, что хотя в отдельных фазах мгновенная мощность пульсирует (см. рис. 5,а), изменяя за время одного периода не только величину, но в общем случае и знак, суммарная мгновенная мощность всех фаз остается величиной постоянной в течение всего периода синусоидальной ЭДС (см. рис. 5,б).

Уравновешенность имеет важнейшее практическое значение. Если бы суммарная мгновенная мощность пульсировала, то на валу между турбиной и генератором действовал бы пульсирующий момент. Такая переменная механическая нагрузка вредно отражалась бы на энергогенерирующей установке, сокращая срок ее службы. Эти же соображения относятся и к многофазным электродвигателям.

Если симметрия нарушается (двухфазная система Тесла в силу своей специфики в расчет не принимается), то нарушается и уравновешенность. Поэтому в энергетике строго следят за тем, чтобы нагрузка генератора оставалась симметричной.

Схемы соединения трехфазных систем

Трехфазный генератор (трансформатор) имеет три выходные обмотки, одинаковые по числу витков, но развивающие ЭДС, сдвинутые по фазе на 120°. Можно было бы использовать систему, в которой фазы обмотки генератора не были бы гальванически соединены друг с другом. Это так называемая несвязная система. В этом случае каждую фазу генератора необходимо соединять с приемником двумя проводами, т.е. будет иметь место шестипроводная линия, что неэкономично. В этой связи подобные системы не получили широкого применения на практике.

Для уменьшения количества проводов в линии фазы генератора гальванически связывают между собой. Различают два вида соединений: в звезду и в треугольник. В свою очередь при соединении в звезду система может быть трех- и четырехпроводной.

На рис. 6 приведена трехфазная система при соединении фаз генератора и нагрузки в звезду. Здесь провода АА’, ВВ’ и СС’ – линейные провода.

Линейным называется провод, соединяющий начала фаз обмотки генератора и приемника. Точка, в которой концы фаз соединяются в общий узел, называется нейтральной (на рис. 6 N и N’ – соответственно нейтральные точки генератора и нагрузки).

Провод, соединяющий нейтральные точки генератора и приемника, называется нейтральным (на рис. 6 показан пунктиром). Трехфазная система при соединении в звезду без нейтрального провода называется трехпроводной, с нейтральным проводом – четырехпроводной.

Все величины, относящиеся к фазам, носят название фазных переменных, к линии — линейных. Как видно из схемы на рис. 6, при соединении в звезду линейные токи и равны соответствующим фазным токам. При наличии нейтрального провода ток в нейтральном проводе . Если система фазных токов симметрична, то . Следовательно, если бы симметрия токов была гарантирована, то нейтральный провод был бы не нужен. Как будет показано далее, нейтральный провод обеспечивает поддержание симметрии напряжений на нагрузке при несимметрии самой нагрузки.

Читайте также:  Норма напряжения в сети в россии по госту 2020 года

Поскольку напряжение на источнике противоположно направлению его ЭДС, фазные напряжения генератора (см. рис. 6) действуют от точек А,В и С к нейтральной точке N; — фазные напряжения нагрузки.

Линейные напряжения действуют между линейными проводами. В соответствии со вторым законом Кирхгофа для линейных напряжений можно записать

; (1)
; (2)

Обычно при расчетах принимается . Тогда для случая прямого чередования фаз , (при обратном чередовании фаз фазовые сдвиги у и меняются местами). С учетом этого на основании соотношений (1) …(3) могут быть определены комплексы линейных напряжений. Однако при симметрии напряжений эти величины легко определяются непосредственно из векторной диаграммы на рис. 7. Направляя вещественную ось системы координат по вектору (его начальная фаза равна нулю), отсчитываем фазовые сдвиги линейных напряжений по отношению к этой оси, а их модули определяем в соответствии с (4). Так для линейных напряжений и получаем: ; .

В связи с тем, что значительная часть приемников, включаемых в трехфазные цепи, бывает несимметричной, очень важно на практике, например, в схемах с осветительными приборами, обеспечивать независимость режимов работы отдельных фаз. Кроме четырехпроводной, подобными свойствами обладают и трехпроводные цепи при соединении фаз приемника в треугольник. Но в треугольник также можно соединить и фазы генератора (см. рис. 8).

Для симметричной системы ЭДС имеем

.

Таким образом, при отсутствии нагрузки в фазах генератора в схеме на рис. 8 токи будут равны нулю. Однако, если поменять местами начало и конец любой из фаз, то и в треугольнике будет протекать ток короткого замыкания. Следовательно, для треугольника нужно строго соблюдать порядок соединения фаз: начало одной фазы соединяется с концом другой.

Схема соединения фаз генератора и приемника в треугольник представлена на рис. 9.

Очевидно, что при соединении в треугольник линейные напряжения равны соответствующим фазным. По первому закону Кирхгофа связь между линейными и фазными токами приемника определяется соотношениями

Аналогично можно выразить линейные токи через фазные токи генератора.

На рис. 10 представлена векторная диаграмма симметричной системы линейных и фазных токов. Ее анализ показывает, что при симметрии токов

В заключение отметим, что помимо рассмотренных соединений «звезда — звезда» и «треугольник — треугольник» на практике также применяются схемы «звезда — треугольник» и «треугольник — звезда».

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А.Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

Питающее напряжение 220 В однофазное и 380 В трехфазное в РФ. 50Гц. Почему так. Жаргон электриков и здравый смысл.

Во первых почему питающее напряжение в электрических сетях пременное, а не постоянное ? Первые генераторы в конце 19-го века выдавали постоянное напряжение, пока кто-то (умный!) не сообразил, что производить переменное при генерации и выпрямлять при необходимости его в точках потребления проще, чем производить постоянное при генерации и рожать переменное в точках потребления.

Во вторых, почему 50 Гц ? Да просто у немцев так получилось, в начале 20 века. Нет тут особого смысла. В США и некоторых других странах 60 Гц. ()

В третьих, почему передающие сети (линии электропередач) имеют очень высокое напряжение ? Тут смысл есть, если вспомнить , то: потери мощности при транспортирове равны d(P)=I 2 *R, а полная передаваемая мощность равна P=I*U. Доля потерь от общей мощности выражается как d(P)/P=I*R/U. Минимальная доля потерь общей мощности, т.о. будет при максимальном напряжении. Трёхфазные сети, передающие большие мощности, имеют следующие классы напряжения:

  • от 1000 кВ и выше (1150 кВ, 1500 кВ) — ультравысокий
  • 1000 кВ, 500 кВ, 330 кВ — сверхвысокий
  • 220 кВ, 110 кВ — ВН, высокое напряжение
  • 35 кВ — СН-1, среднее первое напряжение
  • 20 кВ, 10 кВ, 6 кВ, 1 кВ — СН-2, среднее второе напряжение
  • 0,4 кВ, 220 В, 110 В и ниже — НН, низкое напряжение.

В четвертых: что такое номинальное обозначение В=»Вольт» (А=»Ампер») в цепях переменного напряжения (тока) ? Это действующее=эффективное=среднеквадратическое= среднеквадратичное значение напряжения (тока) , т.е. такое значение постоянного напряжения (тока) , которое даст такую-же тепловую мощность на аналогичном сопротивлении. Показывающие вольтметры и амперметры дают именно это значение. Максимальные амплитудные значения (например с осцилографа) по модулю всегда выше действующего.

В пятых, почему в в сетях потребителей напряжение ниже? Тут смысл тоже есть. Практически допустимые напряжения определялись доступными изоляционными материалами и их электрической прочностью . А потом уже ничего было не поменять.

Что такое «трехфазное напряжение 380 В и однофазное напряжение 220 В» ? Тут внимание. Строго говоря, в большинстве случаев (но не во всех) под трехфазной бытовой сетью в РФ понимают сеть 220/380В (изредка встречаются бытовые сети 127/220 В и промышленные 380/660 В. ). Неправильные, но встречающиеся обозначения: 380/220В;220/127 В; 660/380 В. Итак, далее говорим об обычной сети 220/380Вольт, для работы с остальными — лучше бы Вам быть электриком. Итак для такой сети:

  • Наша домашняя (РФ, да и СНГ. ) сеть 220/380В-50Гц, в Европе 230/400В-50Гц (240/420В-50Гц в Италии и Испании), в США — частота 60Гц, а номиналы вообще другие
  • К Вам придет как минимум 4 провода: 3 линейных («фазы») и один нейтральный (вовсе не обязательно с нулевым потенциалом. )-если у Вас только 3 линейных провода, лучше зовите инженера-электрика.
  • 220В — это действующее напряжение между любой из «фаз»=линейный провод и нейтралью (фазное напряжение).Нейтраль — это не ноль!
  • 380В — это действующее значение между любыми двумя «фазами»=линейными проводами (линейное напряжение)

Проект DPVA.info предупреждает: если Вы не имеете представления о мерах безопасности при работе с электроустановками (см. ПУЭ), лучше сами и не начинайте.

  • Нейтраль (всех видов) не обязательно имеет нулевой потенциал. Качество питающего напряжения на практике не соответствует никаким стандартам, а должно бы соответствовать ГОСТ 13109-97 «Электрическая энергия. Совместимость технических средств. Нормы качества электрической энергии в системах электроснабжения общего назначения» (никто не виноват. )
  • Защитные автоматы (тепловые и КЗ) защищают цепь от перегрузки и пожара, а не Вас от удара током
  • Заземление вовсе не обязательно имеет низкое сопротивление (т.е. спасает от удара током).
  • Точки с нулевым потенциалом могут иметь бесконечно большое сопротивление.
  • УЗО установленное в подающем щите не защищает никого, кто получает удар током из гальванически развязанной цепи, запитанной от этого щита .

Источник

Оцените статью
Adblock
detector