Линейный или импульсный стабилизатор напряжения

Зачем делают импульсные стабилизаторы напряжения.

Рассказано о назначении стабилизаторов, основных типах – линейных и импульсных, достоинствах и недостатках. Показаны испытания и результаты.

Для наглядности рассмотрим структурную схему, из анализа которой, назначение стабилизатора становится наиболее понятным.

Допустим, для питания нагрузки нужно постоянное напряжение 5В. Мы можем сделать выпрямитель, который из напряжения сети сформирует постоянное напряжение 5В при напряжении сети 230В. Но напряжение сети может изменяться и если не предпринять никаких мер, то и напряжение на выходе выпрямителя отклонится от нужного значения 5В. Для того, чтобы этого не произошло, нужен стабилизатор. Отсюда основная задача стабилизатора – поддерживать неизменное напряжение на выходе при изменении входного. Стабилизатор еще выполняет и другие функции, а именно, поддерживает постоянным напряжение в нагрузке при изменении тока в ней и уменьшает пульсации выпрямленного напряжения.

Наиболее простыми являются линейные стабилизаторы. Их принцип работы понятен из приведенной ниже схемы.

При отклонении напряжения на выходе от нормы с делителя напряжения R2, R3 на регулирующий элемент R1 подается управляющий сигнал. R1 изменяет свое сопротивление до тех пор, пока напряжение на выходе не придет в норму. Понятно, что разница между входным и выходным напряжением падает на R1, при больших токах это приводит к выделению значительной мощности и понижает КПД линейного стабилизатора. В качестве R1, как правило, используется транзистор. Для обеспечения его работы в схеме есть источник образцового напряжения (стабилитрон) и усилитель сигнала ошибки. Схемы линейных стабилизаторов выполняются на отдельных элементах и в виде микросхем. Наиболее распространены микросхемы серии 7805, 7808, 7812, КР142ЕН5 и т.д. Подробнее можно посмотреть здесь и здесь.

Ниже приведены результаты испытаний линейного стабилизатора напряжения на микросхеме 7805. Напряжение на входе 7,3В, ток 1,08А. Напряжение на выходе 5,1В, ток 1,01А. Пульсации на осциллографе, подключенном к нагрузке, отсутствуют. Мощность на входе равна 7,3В х 1,08А = 7,9Вт. Полезная мощность в нагрузке равна: 5,1В х 1,01А = 5,2Вт. КПД = 5,2 : 7,9 = 0,66 или 66%.

Напряжение на входе 19В, ток 1,08А. Напряжение на выходе 5,1В, ток 1,02А. Пульсации на осциллографе практически отсутствуют. Мощность на входе равна 19В х 1,08А = 20,5Вт. Полезная мощность в нагрузке равна: 5,1В х 1,02А = 5,2Вт. КПД = 5,2 : 20,5 = 0,25 или 25%.

Чтобы повысить КПД стабилизаторов широко используются импульсные стабилизаторы. Принцип их работы заключается в том, что постоянное входное напряжение преобразуется в импульсное, с частотой от десятков до сотен кГц. Это импульсное напряжение на выходе с помощью индуктивности, диода и конденсатора фильтра снова преобразуется в постоянное напряжение. Величина напряжения на выходе зависит от длительности импульсов и поддерживается постоянной за счет обратной связи управляющей длительностью импульсов генератора. Структурная схема импульсного стабилизатора приведена ниже.

Мощный ключ VT1 в такой схеме имеет два устойчивых состояния – полностью открыт или полностью закрыт. При этом величина выходного напряжения прямо пропорциональна времени открытого состояния ключа. Падение напряжения на нем минимально, и он практически не греется, что существенно повышает КПД таких стабилизаторов. Подробнее о работе импульсных стабилизаторов можно посмотреть здесь .

Ниже приведены результаты испытаний импульсного стабилизатора напряжения на микросхеме 2576Т-5,0.

Напряжение на входе 7,5В, ток 0,84А. Напряжение на выходе 5,В, ток 0,98А. Мощность на входе равна 7,5В х 0,84А = 6,3Вт. Полезная мощность в нагрузке равна: 5 В х 0,98А = 4,9Вт. КПД = 4,9 : 6,3 = 0,78 или 78%. Как видно на осциллограмме, положительные импульсы широкие и небольшие по амплитуде. Это самый низкий КПД для импульсного стабилизатора.

Читайте также:  Из за чего может падать напряжение в проводе

Напряжение на входе 18,2В, ток 0,34А. Напряжение на выходе 5,В, ток 0,99А. Мощность на входе равна 18,2В х 0,34А = 6,2Вт. Полезная мощность в нагрузке равна: 5 В х 0,99А = 5Вт. КПД = 5 : 6,2 = 0,88 или 80%. Положительные импульсы по амплитуде выше, а по длительности меньше, чем в предыдущем случае. По сравнению с КПД линейного стабилизатора 25% при близком напряжении (там было 19В) это в разы лучше.

У линейного стабилизатора больше 19В повышать напряжение на входе не было возможности так как микросхема перегружалась и у нее срабатывала защита. У импульсного стабилизатора повышать напряжение можно. У 2576 до 40В, а у 2576HV до 60В. При этом КПД еще повышается.

Рассчитанный по методике, приведенной выше, при 24,2В КПД импульсного стабилизатора составляет 90%. При этом микросхема практически не греется, так как в последнем рассмотренном примере на ней выделяется мощность 0,6 Вт. У линейного стабилизатора при 19В мощность на микросхеме более 15Вт. Разница впечатляет. Для наглядности результаты сведены в таблицу при минимальных напряжениях на входе:

И при максимальных напряжениях на входе:

Но у импульсных стабилизаторов тоже есть недостатки. Конструктивно немного сложнее, чем линейный стабилизатор. Требуется индуктивность и быстрый диод на выходе. Но самое главное пульсации выше и есть помехи. Как видно на фото ниже они достигают 0,1В при токе 1А.

Для устранения указанных недостатков нужно применять дополнительные фильтры, например, как рекомендовано в документации микросхем 2576:

В любом случае, выигрыш КПД в разы по сравнению с линейными стабилизаторами делает импульсные стабилизаторы напряжения наиболее распространенными в последнее время. А повышение рабочей частоты, например, до 180кГц в микросхемах XL4016, делает возможным получать токи в нагрузке до 8А при небольших габаритах блока с радиатором в целом.

Используя такой импульсный стабилизатор напряжения с возможностью регулировки выходного тока и небольшой вольтметр-амперметр можно изготовить регулируемый блок питания для многих приборов и зарядное устройство для аккумуляторов включая автомобильные. Подробнее как это сделать показано здесь.

Материал статьи продублирован на видео:

Источник

Сравнение линейных и импульсных регуляторов напряжения в промышленных приложениях с шиной 24 В

Texas Instruments TPS54061 LM317

Rich Nowakowski, Robert Taylor, Texas Instruments

Analog Applications Journal

Линейные регуляторы окружали нас на протяжении многих лет. Некоторые разработчики до сих пор используют в новых проектах линейные стабилизаторы напряжения, разработанные более двух десятилетий назад. А кто-то создал собственные схемы на дискретных компонентах. По простоте и дешевизне линейные регуляторы не имеют себе равных в сфере преобразователей напряжения. Однако в слаботочных приложениях с питанием от шины 24 В, используемой, например, в средствах промышленной автоматизации или в системах отопления, вентиляции и кондиционирования воздуха, при слишком большом падении напряжения могут возникнуть проблемы, связанные с выделением тепла. К счастью, разработчикам теперь доступны разнообразные компактные, высокоэффективные импульсные регуляторы с широким диапазоном входных напряжений.

В предлагаемой статье сравниваются три различных подхода к созданию стабилизатора напряжения с выходным напряжением 5 В и максимальным током нагрузки 100 мА, получающего питание от шины 24 В. Синхронный понижающий преобразователь сравнивается с интегральным линейным регулятором и с линейным регулятором на дискретных элементах. Сравнение размеров, КПД, тепловых характеристик, переходных характеристик, шумов, сложности схемы и ее стоимости поможет конструкторам сделать выбор варианта, наилучшим образом отвечающего требованием конкретного приложения.

Читайте также:  Зависимость напряжения солнечной батареи от освещенности

Условия сравнения

Рисунок 1. Импульсный понижающий регулятор с интегрированными MOSFET.

Напряжение 5 В требуется в большинстве промышленных приложений, использующих шину 24 В, для питания, например, логических схем и низковольтных микропроцессоров. Ток 100 мА был выбран как достаточный для большинства подобных нагрузок. Однако на принятие решения о выборе импульсного или линейного регулятора может повлиять уровень рассеиваемой мощности. Изображенные на Рисунках 1, 2 и 3 схемы собраны на общей печатной плате с использованием абсолютно одинаковых конденсаторов емкостью 1 мкФ на входе и 4.7 мкФ на выходе.

Рисунок 2. Интегральный линейный регулятор с широким диапазоном входных напряжений.

В схеме на Рисунке 1 используется выпускаемый Texas Instruments синхронный понижающий преобразователь TPS54061 с интегрированными силовыми MOSFET. Заметим, что этой схеме не требуется фиксирующий диод, но нужны индуктивность, пять конденсаторов и четыре резистора, часть из которых устанавливается в цепь частотной компенсации петли ОС. Схема настроена таким образом, чтобы в ней можно было использовать такие же входные и выходные конденсаторы, как и в линейных схемах, изображенных на Рисунках 2 и 3.

Рисунок 3. Дискретный линейный регулятор.

Конструкция, изображенная на Рисунке 2, основана на популярном, давно ставшим стандартом отрасли линейном стабилизаторе LM317 с широким диапазоном входных напряжений и выходным током до 1.5 А. В схеме использованы два внешних резистора и два конденсатора. Существенное различие между входным и выходным напряжениями и, соответственно, большая рассеваемая мощность, требуют использования микросхемы в корпусе с низким тепловым сопротивлением (DDPak).

Для реализации схемы на дискретных приборах, показанной на Рисунке 3, требуются транзистор, стабилитрон, два внешних конденсатора и четыре резистора. Стабилитрон с напряжением пробоя 5.6 В подключен к базе NPN транзистора. Падение на переходе база-эмиттер уменьшает выходное стабилизированное напряжение примерно до 5 В. Внешние резисторы принимают на себя рассеяние части избыточной мощности, облегчая тепловой режим транзистора.

Таблица 1 позволяет сравнить три конструкции по количеству используемых компонентов и необходимой площади печатной платы.

Источник

Сравнение линейного и импульсного лабораторных блоков питания

С вами интернет-магазин Electronoff! Если поискать в интернете стабилизаторы напряжения, или лабораторные блоки питания, что практически одно и то же, то можно найти два варианта — линейные и импульсные. Сегодня мы разберем, чем же они различаются, функционально и в рабочем плане, расскажем принципы их работы.

Сильно вдаваться в подробности не будем, но основную информацию попробуем рассказать.

Начнем с линейных стабилизаторов.

Их яркими примерами есть популярные микросхемы серии L78xx. Грубо говоря, такие стабилизаторы работают как обычный резистор – всю “лишнюю” энергию, которая не идет в нагрузку, они гасят на себе. Например, возьмем светодиод. Ему нужно 3 вольта, а на входе у нас 12 вольт. Линейный стабилизатор опустит напряжение до 3-х вольт, а оставшиеся 9 вольт, скажем так, “съест” — превратит их в нагрев себя же.

У них эффективность тем больше, чем меньше разница напряжений. Например, если светодиоду нужно 3 вольта, а на входе у нас 5 — стабилизатор скушает 2 вольта и нагреется совсем чуть-чуть. А если мы подадим 30 вольт — ему придется сожрать целых 27 вольт, и нагрев от этого будет значительно больше.

  • Возьмем ток через светодиод равным 100 мА , или 0.1 А .
  • Из рассчета рассеиваемой мощности, P=U*I , при входном напряжении 5 вольт стабилизатор рассеет 2*0.1 = 0.2 Вт , а при входных 30 вольтах уже 27*0.1=2.7 Вт , то есть в 13.5 раз больше.
  • При условии, что сам светодиод потребляет 0.3 Вт , эффективность во втором случае получается ну совсем никакая.
Читайте также:  Последовательное включение транзисторов для повышения напряжения

Но не стоит думать, что эти стабилизаторы совсем уж плохие. У них присутствует несколько существенных преимуществ.

Первое — дешевизна и надежность Сделать нормально работающий стабилизатор можно буквально из трех деталей, причем две будут необязательными
Второе — отсутствие пульсаций и помех на выходе При правильной компоновке на выходе получается ровная линия напряжения при любой нагрузке. А это очень важно для чувствительных к разным наводкам и пульсациям схем на электронных компонентах

К тому же, промышленные блоки питания минимизируют разницу напряжений при помощи трансформаторов с несколькими обмотками. Таким образом всегда работают в оптимальном режиме.

А вот импульсные лабораторные бп немного сложнее. В них не происходит “съедания” лишнего напряжения, они его преобразуют . Образно говоря, это регулируемый трансформаторчик, который подчиняется “трансформаторным” законам сохранения энергии — если на входе было большое напряжение и маленький ток, то на выходе можем получить, скажем, маленькое напряжение и большой ток (больше, чем входной).

В теории такой стабилизатор может иметь КПД, близкое к 100% (но потреи всегда есть — в магнитопроводе, прит нагреве радиодеталей), и производители стремятся быть как можно ближе к этому значению.
С помощью импульсного метода можно делать небольшие, но при этом очень мощные источники питания.

Звучит хорошо, но на практике всё не так радужно.

Импульсные стабилизаторы значительно сложнее в плане схемотехники и производства. В их составе должна быть специализированная микросхема, которая подключается к преобразующему трансформатору или катушке. К ним нужна дополнительная обвязка, и все это дело использует для преобразования большую переменную частоту (поскольку преобразование может происходить только с переменным током (или же импульсным, откуда и название)).

А следовательно возникают следующие возможные проблемы:

  1. Пульсации на выходе. Так как напряжение преобразуется импульсами, эти импульсы могут сохраняться и на выходе стабилизатора, просачиваясь в нагрузку. Особенно неприятно это чувствовать на усилителях звука и других чувствительных схемах — датчиках, сенсорах, таймерах и так далее.
    Пульсации создают помехи не только на частоте преобразования, но и на гармониках этой частоты. К тому же, если основная частота или ее гармоники попадают в звуковой диапазон, то блок питания будет издавать противное пищание, изводящее нашу и без того хрупкую нервную систему.
  2. Помимо этого, куча электроники делает всю схему более хрупкой и “капризной”.
    В качественных промышленных импульсных источниках питания, конечно, пульсации сведены к минимуму, а также предусмотрены всевозможные защиты и настройки, чтобы ничего не ломалось. А вот самостоятельно сделать такой блок без определенного багажа знаний проблематично.

✓ Линейный стабилизатор “в лоб съедает” всю лишнюю энергию, более простой, дешевый и надежный, но значительно менее эффективный. Эффективность тем меньше, чем больше разница между входным и выходным напряжением.

✓ Импульсный стабилизатор (преобразует начальное напряжение в требуемое, сохраняя всю (ну, в идеале, всю) энергию, то есть значительно более эффективный — ему практически безразлична разница между входным и выходным напряжением. Но при этом он значительно более сложный в разработке, наладке и производстве, а из-за этого и более дорогой.

Источник

Оцените статью
Adblock
detector