Lm3915 индикатор уровня напряжения схема

KOMITART — развлекательно-познавательный портал

Разделы сайта

GNEZDO NEWS

Друзья сайта

Статистика

Схема индикатора уровня на LM3914N / LM3915N.

Схема индикатора уровня на LM3914N / LM3915N.

Собираем индикатор уровня сигнала на LM3914N_LM3915N

В схеме индикатора уровня сигнала, который мы рассматриваем в данной статье можно применить такие микросхемы, как LM3914, LM3915 или LM3916. Но, хотя цоколевка у этих МС одинаковая, между ними существует небольшая разница. LM3914 – линейная, подойдет, например, для измерения постоянного напряжения, LM3915 и LM3916 – логарифмические, поэтому последние наиболее целесообразно применить для индикатора уровня. Микросхема управляет десятью светодиодами, режим индикации можно менять с помощью переключателя ТОЧКА / ЛИНИЯ. В наших закромах завалялся скан паспорта индикатора от производителя ВИТАН-Электроникс, он показан на снимке ниже:

Мы немного отреставрировали принципиальную схему:

Если вы планируете в процессе эксплуатации изменять режим индикации, в качестве переключателя можно применить любой малогабаритный тумблер, и вывести его на лицевую панель прибора, ну а если необходим какойто один режим, на плате можно разместить джампер с установленной либо снятой перемычкой в зависимости от того, какой режим вам нужен.

Яркость свечения светодиодов определяется номиналом резистора в цепи 6,7 ножек микросхемы, в вышеприведенной схеме это 1 кОм. Таким образом можно добавить подстроечный резистор в эту цепь, и сделать регулировку яркости, как показано на следующей схеме:

Печатная плата для одного канала индикатора LAY6 формата выглядит так:

Фото-вид печатной платы LAY6 формата:

Скачать материал по сборке индикатора уровня сигнала можно по прямой ссылке с нашего сайта, которая появится по центру этой же страницы после клика по любой строке рекламного блока ниже кроме строки “Оплаченная реклама”. Размер файла – 0,2 Mb.

Уважаемый Пользователь!
О том, как получить нужный материал, прочитайте информацию по кнопке ниже:

Источник

Радиоконструктор 040 — Индикатор уровня сигнала на LM3915

Вариант №040 «Индикатор уровня сигнала» на микросхеме LM3915″. Десять компараторов, входящих в состав микросхемы позволяют строить логарифмическую шкалу индикации уровня сигнала в виде столбика из десяти светодиодов.

Из деталей этого набора можно собрать электронное устройство «индикатор уровня сигнала (аудио сигнала) на микросхеме LM3915». Основа устройства – микросхема LM3915, состоящая из 10 компараторов, подключенных к отводам резистивного делителя сигнала.

Особенность данного делителя в том, что он строит логарифмическую шкалу индикации, в отличие от LM3914, в которой делитель линейный, соответственно линейная и шкала индикации. Поэтому LM3914 применяется в устройствах измерения линейных параметров (напряжение, ток, мощность), а LM3915 в устройствах измерения звуковых (аудио) сигналов. Количество выходов микросхемы позволяет построить шкалу из 10 светодиодов.

Резисторы R3,R4,R7 образуют делитель входного напряжения, позволяющий с помощью подстроечного резистора R4 установить оптимальный уровень входного сигнала, поступающего на вход 5 микросхемы. Минимальный сигнал индицируется первым светодиодом D1, максимальный — D10. Устройство микросхемы позволяет подключать к ней светодиоды с максимально допустимым рабочим током до 20мА без ограничительного резистора. Но при одинаковом токе жёлтого и красного светодиода световосприятие цветов и падение напряжения на них различается, поэтому в цепи красных светодиодов включены ограничительные резисторы R1, R8. Микросхема имеет 9 вывод с функцией «точка/линия», т.е. в режиме «точка» (перемычка между 9 выводом и плюсом питания отсутствует) одновременно светится только один из десяти светодиодов, соответствующий уровню входного сигнала. Если эта перемычка установлена, индикация будет отображаться в виде линии или столбика, высота которого будет пропорциональна уровню сигнала на входе устройства. Для индикации стерео сигнала необходимо собрать два таких устройства.

В комплект входит готовая печатная плата, что значительно упрощает сборку устройства. Особое внимание необходимо уделить соблюдению полярности питающего напряжения (внешний источник постоянного напряжения 12 вольт в комплект не входит), правильной установке в плату панельки и микросхемы в неё, совместив отметку ключа панельки, микросхемы и положения их на плате. Также необходимо соблюдать полярность подключения светодиодов (длинный вывод – анод (к питающей шине), короткий – катод (к микросхеме)). Индикатор перекрывает диапазон измерения в 27дБ (децибел).

Источник

Светодиодный индикатор уровня сигнала на LM3915

Светодиодный индикатор уровня сигнала, имитирующий стрелочный индикатор идея не новая и, казалось бы, что тут можно придумать нового? Ну, в этом плане я ничего не изобрел. Более того, схема собрана из кусочков, свободно выложенных на различный сайтах, в том числе и на cxem.net. Я даже затрудняюсь указать первоисточник. Цель другая: сделать простую схему, на доступных элементах. В схеме даже нет вездесущих микроконтроллеров. При том не просто спаять плату, а сделать законченную конструкцию, которую можно установить в усилитель без ущерба внешнего вида. А так же на основе этой схемы сделать свой вариант индикатора, с учетом навыков в электронике, или например, цветомузыку. С этой целью индикатор выполнен на двух платах: плата управления светодиодами и плата индикации. В рамках данной статья я предлагаю 3 варианта индикатора, условно назовем «стрелка», «лампа 6Е1П» и «дуга». Также на выбор 2 варианта подсветки шкалы (А и Б). И все это можно сделать на светодиодах 5мм, 3мм или SMD 0805. Как и любая другая эта схема имеет свои достоинства и недостатки. Достоинство: дешевая элементная база, с большой взаимозаменяемостью, допусками, сравнительно простая схема. Варианты индикации, как говориться, на любой вкус. Недостатки: подбор многих элементов, в противном случае пришлось бы привязываться к одному типу светодиодов. Небольшой динамический диапазон, т.е. на мощном усилителе при малой громкости индикатор будет «молчать». Визуальное раздваивание «стрелки», что вызвано плавным переключением компараторов LM3915 в режиме «точка». Устранение этого явления возможно, но требует усложнения схемы. Высокая плотность и малая толщина дорожек на плате. Решается покупкой готовых плат, но я делал сам с применением фоторезиста.

Схема работает следующим образом. Входной сигнал подается на VT1. Уровень входного сигнала регулируется R1. После усиления и выпрямления входной сигнал поступает на вход LM3915. К выходам МС подключены непосредственно светодиоды (1 линейка). Через транзисторные ключи на VT2-VT11 дополнительно 6 линеек светодиодов. Транзисторные ключи применены, т.к. тепловое сопротивление корпуса МС составляет 55 °С/Вт, что допускает максимальную мощность 1365 мВт при температуре окружающей среды 25 °С. Впрочем не будем углубляться в скучный мир цифр, лишь скажу, что на каждый выход LM3915 можно подключить не более 2-х светодиодов. В противном случае МС будет перегреваться. Кнопкой S1 осуществляется переключение режимов индикации «столбик» и «точка». Кнопкой S2 включаются дополнительные линейки светодиодов, что дает возможность реализовать еще 2 режима работы индикатора. Как видно из схемы, многие элементы (R и С) необходимо подбирать. Это можно отнести к недостатку схему и преимуществу. Подбор позволяет применить любые светодиоды, не привязываться к Vпит. 12В и настроить яркость свечения светодиодов индикатора и подсветки на свой вкус. R6 обеспечивает свечение «стрелки» на «нуле» при отсутствии входного сигнала. Как правило, подбор R6 не требуется, при питании схемы 12В. Если «стрелка» на «нуле» не нужна, то R6 не устанавливаем. Подбором R7 устанавливаем необходимую яркость свечения светодиодов, подключенные напрямую к LM3915 это по схеме HL7, 14, 21, 26, 35, 42, 49, 56, 63, 70. Чем меньше R7, тем больше ток через светодиоды, минимальное допустимое значение R7 20кОм. Резистором R8 регулируем яркость светодиодов подсветки. Мощность R8 не менее 1Вт. Резисторами R9-R18 регулируем яркость свечения остальных светодиодов. Примерно 10кОм для светодиодов силой света 1000 mcd, 1кОм для светодиодов 200-300 mcd. Конденсатором С3 можно регулировать инерционность «стрелки». Питается устройство от источника стабилизированного напряжения 12В с током 0,2-0,3А для моно варианта. Напряжение питания можно увеличить до 18В.

Выбор деталей, сборка и настройка схемы. Плата разведена под транзистор КТ361, можно заменить на КТ814, КТ816 и на любые отечественные и импортные транзисторы p-n-p проводимости малой и средней мощности, с Iк. 100мА и Uкэ 20В. Резисторы R19-R38 можно заменить на любые от 4,7кОм до 10кОм, но одного номинала. Кнопки S1 и S2 любые с фиксацией, для стерео варианта с 2-ми парами контактов. При выборе светодиодов необходимо учитывать следующее. Сила света светодиода должна быть в пределах 300-1000 mcd. Более «тусклые» не пригодны, иначе яркость индикатора будет не достаточно. Применять светодиоды с силой света более 1000 mcd не целесообразно, т.к. слишком яркие и все равно придется «приглушать», ограничивая ток, а стоят дороже. Оптимальный вариант светодиодов круглые, с цветной матовой линзой. Все светодиоды должны быть одинаковые по параметрам. При пайке светодиодов необходимо учитывать, что они не любят механических усилий на выводы и перегрева. Приобретать светодиоды рекомендую с некоторым запасом, т.к. в процессе пайки и настройки неизбежны повреждения. Да и брак попадается. При пайке не применяйте активные флюсы. После пайки промыть платы, иначе при утечки тока между дорожками приведет к паразитному подсвечиванию светодиодов. Помните, что светодиод зажигается не от напряжения, а от наличия тока. Первое включение нужно делать от регулируемого источника питания, начиная с 5В. Это необходимо, что не спалить светодиоды из-за косяков монтажа и пайки, и не выставленного тока. Убедившись, что светодиоды не вспыхнули неестественно ярко, плавно увеличит питание до 12В. Подбирая резисторы, устанавливаем желаемую яркость индикатора и подсветки. Обычно яркость светодиодов достаточно при токе 5-10мА, что ниже номинального тока светодиода.

Читайте также:  Лампа в холодильник напряжение

Внешне оформление и отличия вариантов индикаторов. Внешне оформление изложено в видео отчете. Добавлю, что подбирая ток светодиодов нужно добиться сбалансированного свечения индикатора и подсветки. Тогда индикатор будет выглядеть красиво. Подсветка варианта «А» смотрится красивее, чем «Б», но сложнее в изготовлении. Трафарет для индикатора находить в файле LAY с платой. Платы и трафареты при распечатывании «зеркалить» не надо. Крепиться индикатор в усилителе любым удобным способом, за окном лицевой панели. Не располагать вблизи сильно нагревающихся элементов. Можно слегка затонировать стекло лицевой панели для скрытия возможных мелких дефектов внешнего оформления. Вход индикатора подключается параллельно выходу регулятора громкости или входа оконечного усилителя. Настройка заключается в установки подстроечным резистором R1 «стрелки» индикатора на +3db при номинальной мощности усилителя.

Обращаю внимание, что размеры плат индикаторов разные и размер платы существенно больше рабочего окна индикатора. На индикаторе «Дуга» количество светодиодов желтого и красного цвета использовано по 26 шт. для стерео варианта. В схеме это не отражено, но сборка и регулировка не отличается. Также в подсветке в различных вариантах используется от 3-х до 10-ти светодиодов (смотри в LAY). На схеме это также не отражено, чтобы не возникало путаницы.

Источник

Светодиодные индикаторы уровня на микросхемах семейства LM3914, LM3915 и LM3916

Микросхемы LM3914, LM3915 и LM3916 фирмы National Semiconductors позволяют строить светодиодные индикаторы с различными характеристиками — линейной, растянутой линейной, логарифмической, специальной для контроля аудиосигнала.


Структура базовой микросхемы LM3914 семейства представлена на рис. 1. Ее основу составляют десять компараторов, на инверсные входы которых через буферный ОУ подается входной сигнал, а прямые входы подключены к отводам резистивного делителя напряжения. Выходы компараторов являются генераторами втекающего тока, что позволяет подключать светодиоды без ограничительных резисторов. Индикация может производиться или одним светодиодом (режим «точка»), или линейкой из светящихся светодиодов, высота которой пропорциональна уровню входного сигнала (режим «столбик»).
Входной сигнал UBX подают на вывод 5, а напряжения, определяющие диапазон индицируемых уровней, — на выводы 4 (нижний уровень UH) и 6 (верхний уровень UB). Эти напряжения должны быть в пределах от 0 до уровня, на 1,5 В меньше напряжения источника питания, подключаемого к выводу 3.
«Цена деления» индикатора, т. е. увеличение входного напряжения, вызывающее включение очередного светодиода, составляет 0.1 от разности UB-UH.

Индикатор на микросхеме LM3914 работает следующим образом. Пока напряжение на входе UBX меньше, чем на входе UH плюс «цена деления», ни один светодиод не светится. Как только эти напряжения сравняются, включается светодиод HL1, подключенный к выходу 1. В режиме «точка» при увеличении входного напряжения ток по выходу 1 прекращается и появляется ток выхода 2, при этом гашение первого светодиода и включение второго происходит одновременно, свечение как бы «перетекает» из одного светодиода в другой, и не возникает ситуации, когда оба светодиода погашены. В режиме «столбик» включение очередного светодиода, естественно, не вызывает гашения предыдущего.
Микросхема LM3914 предназначена для построения индикаторов с линейной шкалой, и все резисторы ее делителя имеют одинаковое сопротивление. У микросхемы LM3915 делитель рассчитан так, что включение каждого последующего светодиода происходит при увеличении напряжения входного сигнала в√2 раз (на 3 дБ), что удобно для контроля мощности УМЗЧ. Микросхема LM3916 специально предназначена для контроля уровня аудиосигнала. Шаг индикации у нее составляет 1 дБ в верхней части шкалы и увеличивается до 3 и 10 дБ в нижней части. В табл. 1 приведены уровни входного сигнала, включающего соответствующий светоди-од, при нормировании на максимальное напряжение 10 В.
Уровни в последней колонке приведены для случая использования микросхемы LM3916 для диапазона индикации -20. +3 дБ.
Микросхемы содержат источник опорного напряжения с номинальным значением 1,25 В. Путем подключения двух внешних резисторов напряжение может быть установлено любой большей величины, не превышающей на 2 В ниже напряжения питания, но не более 12 В. Подключение резисторов и расчет опорного напряжения осуществляется так же, как для микросхемы LM317 (КР142ЕН12):

где R1 — сопротивление резистора, подключенного между выводами 7 и 8, R2 — сопротивление резистора, подключенного между выводом 8 и общим проводом, I8 — вытекающий ток вывода 8, составляющий около 100 мкА.

Переключение между режимами «точка» и «столбик» производится управлением по выводу 9. При подключении этого вывода к плюсу источника питания микросхемы (вывод 3) реализуется режим «столбик», если же вывод оставить свободным или подключить к общему проводу — «точка». Порог переключения между режимами примерно на 100 мВ ниже напряжения на выводе питания 3.
Параметры микросхемы LM3914 приведены в табл. 2.

Типовая схема подачи входного сигнала на микросхему показана на рис. 2. Сопротивление резистора R1 выбирают в соответствии с уровнем входного сигнала UMAX, при котором должен включаться верхний светодиод шкалы, по формуле:

Входное сопротивление микросхемы весьма велико, поэтому в большинстве случаев при расчете номинала резистора R1 его можно не учитывать.
Интересна роль резистора R3, его сопротивление определяет ток через светодиоды. На рис. 3 представлены начальные участки выходных характеристик генераторов тока, включающих светодиоды, при различных значениях тока нагрузки источника опорного напряжения lL(REF) (ток вывода 7). Как видно из рис. 3, ток через каждый свето-диод примерно в 10 раз больше тока нагрузки источника опорного напряжения.
Возможна подача опорного напряжения, например, 10 В от внешнего источника (рис. 4). В этом случае диапазон входного напряжения составляет 0. 10 В, а при указанном на схеме сопротивлении резистора R3, так же, как и для варианта по схеме на рис. 2, номинальный ток через светодиоды равен 10 мА.

Установка необходимого напряжения внутреннего источника проиллюстрирована на рис. 5. Как уже указывалось выше, напряжение питания микросхемы должно по крайней мере на 2 В превышать напряжение опорного источника. Если напряжение на выводе 4 микросхемы (UH) установить отличным от нуля, можно получить растянутую линейную шкалу — от UH до UB. Такая схема включения проиллюстрирована на рис. 6. Напряжение на входе UB составляет около 1,2 В, а на входе UH подстроечным резистором R3 это может быть установлено в пределах O. UB. Если его выбрать равным 2/3 от UB, т. е. 0,8 В, а коэффициент передачи делителя R1R2 подстроенным резистором R2 установить 0,08, то диапазон индицируемых уровней составит 10,5. 15 В, точнее первому включившемуся светодиоду соответствует напряжение 10,5 В. последнему — 15 В.

Вариант получения аналогичной шкалы в вольтметре для измерения напряжения бортовой сети автомобиля приведен на рис. 7. В этом случае напряжения верхнего UB = 3,6 В и нижнего уровня UH= 2,4 В устанавливаются подстроенным резистором R4, а коэффициент передачи входного сигнала на вход UBX микросхемы, равный 0,24, — резистором R2.
Во всех рассмотренных выше вариантах индикаторов вход 9 управления «столбик/точка» был никуда не подключен, что обеспечивало индикацию в режиме «точка». Если желательна индикация «столбиком», как уже указывалось выше, вход 9 следует подключить к входу для подачи напряжения питания на микросхему (вывод 3). Однако при включении всех десяти светодиодов существенно увеличивается мощность, рассеиваемая на микросхеме, поэтому следует произвести ее контрольный расчет. Тепловое сопротивление корпуса составляет 55 °С/Вт, максимальная температура кристалла — 100 °С, что допускает максимальную мощность 1365 мВт при температуре окружающей среды 25 °С, 1100 мВт — при 40 °С, 730 мВт — при 60 °С. Если задаться током 10 мА через каждый светодиод, то суммарный ток через 10 включенных светодиодов будет 100 мА и при температуре 40 °С напряжение на выходах микросхемы не должно превышать 11 В, а напряжение питания цепей светодиодов — 12,5 В.
Если нужен больший ток через светодиоды, можно уменьшить напряжение питания светодиодов вплоть до 3 В, при этом питание микросхемы можно осуществлять от источника с большим напряжением. В случае, когда применение двух источников по каким-либо причинам неприемлемо, можно последовательно с каждым светодиодом включить ограничительный резистор, как это показано на рис. 8. Для формирования «столбика» можно все све-тодиоды соединить последовательно, а микросхему перевести в режим «точка» (рис. 9). Напряжение питания в этом случае должно определяться исходя из того, что падение напряжения на каждом светодиоде около 2 В, почти столько же должно быть на выходе 10 микросхемы, когда включены все светодиоды.
Последовательное включение свето-диодов в режиме «точка» позволяет получить интересный вариант построения индикатора. В качестве примера на рис. 10 приведена возможная схема устройства. Если светодиоды HL1—HL4 установить желтого цвета свечения (мало), HL5—HL8 — зеленого (норма), HL9, HL10— красного (перегрузка), одного взгляда на индикатор будет достаточно для оценки измеряемого параметра. Число светодиодов в каждой цепочке, число цепочек и цвета светодиодов могут быть и другими, соответствующими поставленной задаче. Такой вариант с использованием микросхемы К1003ПП1 описан автором в статье [1].

Напряжение питания микросхемы должно находиться в пределах 3. 25 В. Напряжение питания светодиодов должно быть не менее 3 В и не более напряжения питания микросхемы. Источник питания микросхемы в непосредственной близости от нее должен быть зашунти-рован оксидным танталовым конденсатором емкостью не менее 2,2 мкФ или алюминиевым 10 мкФ. Возможно питание цепи светодиодов выпрямленным неотфильтрованным напряжением частотой 50 Гц, однако необходимо подключение к этой цепи такого же блокировочного конденсатора, как и к микросхеме.

При необходимости индикации числа уровней, большего 10, можно использовать несколько микросхем, соединив их каскадно, допустимо соединение до пяти микросхем. Возможный вариант соединения двух микросхем LM3914 приведен на рис. 11, следует обратить внимание на следующее. Источник опорного напряжения микросхемы DA1 работает в обычном режиме и нагружен на резистор R3, что обеспечивает ток 10 мА через подключенные к этой микросхеме светодиоды. Минусовый вывод источника микросхемы DA2 подключен к плюсовому выводу первого источника и обеспечивает между входами UB и UH микросхемы DA2 напряжение 1,2 В, «поднятое» вверх на 1,2 В. Источник микросхемы DA2 нагружен на резистор R4, что задает ток через светодиоды, подключенные к этой микросхеме, той же величины, что и через светодиоды DA1.
Для обеспечения режима «столбик» достаточно выводы 9 каждой микросхемы соединить с выводами 3. Сложнее с режимом «точка», для него необходимо гашение светодиода HL10 при включении любого из светодиодов HL11— HL20. Сигнал о необходимости гашения HL10 поступает с выхода 1 DA2 на вход 9 DA1. Если включен любой из светодиодов HL11—HL20, падение напряжения на HL1 составляет не менее 1 В, поскольку через него проходит или рабочий ток светодиода, или специально формируемый микросхемой DA2 ток порядка 150 мкА (допуск— 60. 450мкА), не вызывающий заметного свечения обычных (не супе-рярких) светодиодов. Это падение сравнивается специальным компаратором микросхемы DA1 с напряжением питания светодиодов. Для подачи этого напряжения на второй вход компаратора, соединенный с выводом 11 (выход 9) DA1, служит резистор R5.
Делитель напряжения микросхемы имеет очень хорошую точность, однако для реализации потенциальных возможностей микросхемы следует тщательно подойти к разводке цепей общего провода. Ток вывода 2, который в режиме «столбик» может доходить до 300 мА, не должен протекать по проводникам, через которые подключаются нижний вывод резистивного делителя микросхемы (вывод UH)f источник входного сигнала и минус источника опорного напряжения. В режиме «столбик» по проводнику, соединяющему выводы 9 и 3, не должны протекать токи светодиодов.
Для четкой работы индикатора рекомендуется «цену деления» устанавливать не менее 20 мВ в режиме «столбик» и 50 мВ в режиме «точка».

Читайте также:  Vavg что это напряжение

Схема интересного варианта индикатора двуполярного напряжения приведена на рис. 12. Микросхема DA1 работает практически в стандартном режиме и формирует светящийся «столбик», высота которого пропорциональна положительному входному напряжению.
Микросхема DA2 также работает в режиме «столбик», но включена необычно. Все светодиоды, подключенные к ее выходам, получают питание через резисторы R6—R15 и гаснут при включении соответствующих выходов микросхемы. На нижний вывод UH встроенного делителя подано напряжение -1,32 В со стабилизатора на микросхеме DA3. В результате на верхнем выводе делителя UB микросхемы DA2 формируется уровень около -0,12 В, и при нулевом или положительном напряжении на входе этой микросхемы все выходы микросхемы включены и свето-диоды, подключенные к ее выходам, погашены.
При подаче на вход индикатора отрицательного напряжения, увеличивающегося по абсолютной величине, вначале выключается выход 10 и зажигается светодиод HL11, затем поочередно еще и HL12—HL20, что формирует «столбик», высота которого пропорциональна модулю отрицательного напряжения на входе.
Для обеспечения функционирования микросхем при отрицательных входных сигналах на выводы микросхем 0В для подачи минуса питания подано то же напряжение -1,32 В. Точная подстройка этого напряжения производится резистором R5.
Ток через светодиоды HL1—HL10 определяется резистором R1 и составляет около 10 мА, примерно такой же ток течет через резисторы R6—R15 и обеспечивает необходимую яркость свето-диодов HL11—HL20. Поскольку при включении выходов микросхемы DA2 напряжение на ее выходах составляет около -1 В, ток через резисторы R6— R15 увеличивается почти до 14 мА, что и определяет выбор сопротивления резистора R2.
Схема на рис. 13 иллюстрирует вариант построения вольтметра с растянутой шкалой для измерения отклонения напряжения на входе от номинального +5 В. Цена деления вольтметра — 120 мВ, полный диапазон — 4,46. 5,54 В. Выходное напряжение опорного источника 1,2 В делителем R1R2 уменьшается до необходимого 1,08 В, подстроенным резистором R1 устанавливается его точное значение, а резистором R4 — начальное напряжение шкалы Uн.
Индикатор может работать как в режиме «точка», так и в режиме «столбик». Выбор режима осуществляется переключателем SA1. Светодиоды шкалы целесообразно установить разного цвета свечения, например, HL4—HL7 — зеленого; HL3, HL8 — желтого; HL1, HL2, HL9, HL10 — красного, что обеспечит эффективную индикацию отклонения напряжения от +5 В.

Схема на рис. 13 также иллюстрирует упоминавшуюся ранее возможность питания светодиодов от нестабилизиро-ванного и нефильтрованного источника питания. Конденсатор С2 служит для обеспечения устойчивой работы микросхемы.
Индикатор по схеме на рис. 14 обеспечивает интересный эффект, который можно назвать «восклицательный знак». Микросхема работает в режиме «точка» и при нулевом напряжении на входе UBX все светодиоды погашены. Входной сигнал в диапазоне 0. 1.2 В подается на этот вход микросхемы через резистор R2, вход зашунтирован конденсатором С2. Конденсатор периодически разряжается транзистором VT1, на базу которого подаются импульсы с частотой 1 кГц и длительностью 100 мкс. Напряжение на входе имеет вид импульсов длительностью 900 мкс по основанию с экспоненциально затянутым фронтом с постоянной времени R2C2 = 200 мкс. В результате ярко светится светодиод HL1 (он должен быть установлен ниже HL2) и светодиод, соответствующий входному напряжению. Во время прохождения фронта импульса светятся и промежуточные светодиоды, причем с тем большей яркостью, чем выше по рис. 14 светодиод расположен, и возникает упомянутый выше эффект.
Индикатор, схема которого приведена на рис. 15, при малых уровнях входного сигнала работает в режиме «точка», поскольку транзистор VT1 закрыт и на управляющий вход CfT через делитель R3VD1R4 подается напряжение, примерно на 0,7 В ниже напряжения питания. Когда включается светодиод HL10, открывается транзистор VT1, и напряжение на входе СЯ становится близким к напряжению на выводе +ипит. Микросхема переходит в режим «столбик» и вспыхивает вся шкала, привлекая к себе внимание. Резистор R2 позволяет регулировать яркость свечения светодиодов.
Очевидно, что точку соединения резисторов R5 и R6 можно подключить к любому из выходов микросхемы и переход в режим «столбик» будет происходить при включении соответствующего светодиода.

На рис. 16 приведена схема индикатора, работающего в режиме «столбик». Его особенностью является то, что при зажигании светодиода HL10 отрицательный перепад напряжения с выхода 10 микросхемы через конденсатор С2 и резистор R2 проходит на выход источника опорного напряжения +UREF и нагружает его. В результате яркость свечения светодиодов резко увеличивается и, как и в предыдущем варианте включения, привлекает внимание. Длительность вспышки определяется постоянной времени C2R2 и составляет около 50 мс. Так же, как и в варианте по схеме на рис. 15, элементы R2—R4, С2 могут быть подключены к любому из светодиодов индикатора.
Как указывалось выше, гашение светодиодов и их зажигание происходят относительно плавно. При необходимости можно обеспечить резкое переключение светодиодов, схема возможного варианта индикатора с резким переключением, работающего в режиме «столбик», приведена на рис. 17— Дополнительные по сравнению со стандартным включением элементы DA2, R2—R5, С2 вводят положительную обратную связь в компараторы микросхемы. Рассмотрим работу индикатора подробнее.
Если на входе UBX микросхемы нулевое напряжение, все светодиоды погашены, микросхема DA2, являющаяся стабилизатором отрицательного напряжения 1,2 В (отечественный аналог — КР142ЕН18А), обеспечивает на резисторе R5 напряжение 1,2 В, а ее потребляемый по входному выводу ток составляет около 110 мА. Этот ток создает падение напряжения на резисторе R2 около 300 мВ, и, поделенное делителем R3R4 до уровня 25 мВ, оно подается на вход UH микросхемы DA1. Это поднимает пороги переключения компараторов, управляющих светодиодами HL1— HL10, на такую же величину.
При повышении входного напряжения включается светодиод HL1. В процессе его включения ток через светодиод HL1 начинает протекать через резистор R5, и потребляемый микросхемой DA2 ток уменьшается. Это уменьшает падение напряжения на R2 и R4 и снижает порог переключения компаратора, замыкая цепь положительной обратной связи, светодиод HL1 включается скачком. При дальнейшем увеличении входного напряжения также скачком поочередно включаются остальные светодиоды. При уменьшении входного напряжения также резко светодиоды будут выключаться, гистерезис каждого порога составит 0,5. 1 мВ.

Основное отличие микросхемы LM3915 от ранее рассмотренной LM3914 заключается в номиналах встроенного делителя напряжения, что обеспечивает логарифмическую шкалу индикатора (см. табл. 1 ). Суммарное сопротивление резисторов делителя и точность порогов микросхемы приведены в табл. 3, остальные параметры указанных микросхем совпадают.
Простейший вариант построения логарифмического индикатора мощности, подаваемой на акустическую систему (АС), проиллюстрирован на рис. 18. Входной сигнал с контролируемой АС через делитель напряжения R1R2 подается непосредственно на сигнальный вход UBX микросхемы. Опорное напряжение выбором резисторов R3 и R4 установлено равным 8,65 В, что обеспечивает индикацию указанных на рис. 18 уровней при установке резистора R1 необходимого номинала в соответствии с сопротивлением АС.

Индикатор работает в режиме «точка» с током через каждый светодиод около 30 мА. Поскольку на входе индикатора напряжение переменное, светящиеся светодиоды образуют столбик с неравномерной яркостью, по которому можно оценить как среднюю мощность на АС, так и ее амплитудное значение.
Более точный индикатор среднего или амплитудного значения можно построить с использованием выпрямителя входного сигнала. Если микросхема используется при напряжении опорного источника 10 В, пороговое напряжение для уровня -27 дБ составляет 0,447 В (см. табл. 1) и простейший выпрямитель на кремниевом диоде с «пяткой» 0,6 В даст слишком большую погрешность. Схема простого пикового детектора, обеспечивающего удовлетворительную точность в диапазоне до -30 дБ при полной шкале 10 В, приведена на рис. 19. «Пятку» диода компенсирует напряжение UБЭ транзистора VT1.
Для получения большей точности в широком диапазоне входных напряжений необходимо применять активные выпрямители с использованием ОУ. Схема несложного однополупериодного выпрямителя приведена на рис. 20. Конденсатор фильтра С2 заряжается через резистор R3 и разряжается через R2 и R3, поэтому в зависимости от соотношения номиналов этих резисторов устройство может выполнять роль как выпрямителя пикового значения (номиналы указаны на рис. 20), так и среднего (номиналы резисторов R2 и R3 надо поменять местами). Этот выпрямитель вполне работоспособен в диапазоне уровней входного сигнала 60 дБ.

Читайте также:  Что такое номинальное напряжение пэд

Для точного двухполупериодного выпрямления и сглаживания можно использовать выпрямитель среднего значения, схема которого приведена на рис. 21. При установке резисторов R1—R4 с допуском 1 % усиление положительной и отрицательной полуволн различается не более чем на 0,5 дБ. Постоянная времени усреднения определяется произведением R5C2. Небольшая модификация выпрямителя (рис. 22) обеспечивает выделение информации о пиковом значении входного сигнала. Поскольку сглаживающий конденсатор не буферизирован, этот выпрямитель, так же, как и выпрямители по схемам на рис. 19 и 20, можно нагружать только на нагрузку с большим входным сопротивлением. Микросхема LM3915 вполне соответствует необходимому требованию.
Для выпрямления входного сигнала можно применять специализированные микросхемы, о применении двух из них рассказано в статьях [2—4].

Для построения индикаторов с более широким диапазоном, чем 27 дБ, можно применять каскадирование микросхем. Простейший вариант соединения двух микросхем показан на рис. 23. Опорное напряжение микросхемы DA2 устанавливается подстроечным резистором R4 и составляет 10 В, микросхема работает в стандартном режиме. Для микросхемы DA1 опорное напряжение — 316 мВ, оно подстраивается резистором R1. Входной сигнал подается параллельно на входы обеих микросхем DA1 и DA2. Недостатком такого метода соединения микросхем является то, что порог для уровня включения светодиода -57 дБ составляет 14 мВ и может иметь приводящее к значительной ошибке смещение ±10 мВ.
Схема более точного варианта каскадирования микросхем приведена на рис. 24. Опорное напряжение обеих микросхем одинаково и составляет 10 В. Входной сигнал находится в диапазоне 0. 10 В и на микросхему DA2 подается непосредственно, а на DA1 — после предварительного усиления в 31,6 раза операционным усилителем DA3. Естественно, что он ограничивается в ОУ DA3 и не может существенно превышать 10 В. Если резисторы R4 и R5 использовать с допуском ±1 %, подстройки коэффициента усиления не потребуется. Однако, смещение нуля ОУ DA3 может внести значительную погрешность, и его коррекция, как правило, необходима. Подстройка нуля может быть единой для ОУ усилителя DA3 и ОУ, входящих в состав выпрямителя входного сигнала.
Принципиально можно соединить три микросхемы LM3915 аналогично рис. 24 и расширить диапазон индикации до 90 дБ, однако при этом придется проявить особую тщательность при усилении сигнала 0,5 мВ. Может потребоваться подстройка нуля в различных каскадах и разделение общего провода цепей питания и сигнала.
Некоторые замечания по установке тока светодиодов. В приведенном на рис. 25 стандартном варианте формирования опорного напряжения выходной ток по выводу 7 складывается из тока делителя R1R2 и тока через внутренний делитель микросхемы, номинальное сопротивление которого составляет 22 кОм. При опорном напряжении 10 В ток через внутренний делитель составляет около 450 мкА, это увеличивает ток через каждый включенный светодиод на 4,5 мА, что следует обязательно учитывать.
На рис. 26 представлена схема раздельной подстройки опорного напряжения (подстроечный резистор R3) и тока через светодиоды (резистор R5). Диапазон регулировки тока через светодиоды для указанных номиналов резисторов составляет 9. 28 мА. Аналогичная схема раздельной регулировки для случая соединения двух микросхем приведена на рис. 27.

Интересная схема нуль-индикатора на микросхемах LM3915 приведена на рис. 28. Его особенностью является повышение чувствительности по мере приближения к нулевому уровню. Микросхема DA2 работает в обычном режиме при опорном напряжении 1,25 В. При входном сигнале, близком к верхнему уровню шкалы, шаг индикации примерно равен 360 мВ, а при приближении к нулю — около 20 мВ. Для подачи на вход микросхемы DA1 входное напряжение инвертируется каскадом на ОУ DA3, в результате чего и образуется нуль-индикатор. За счет подачи на вход UH обеих микросхем небольшого отрицательного напряжения можно регулировать чувствительность индикатора вблизи нуля и даже менять характер индикации, например, при нулевом напряжении на входе можно добиться или гашения свето-диодов, подключенных к выводам 1 микросхем, или их зажигания.
Подключение светодиодов или других индикаторов к одной микросхеме LM3915 или цепочке микросхем производится так, как это описано в предыдущих частях статьи по отношению к микросхемам LM3914.
Подключение светодиодов или других индикаторов к одной микросхеме LM3915 или цепочке микросхем производится так, как это описано в предыдущих частях статьи по отношению к микросхемам LM3914.

Подключение вакуумного люминесцентного индикатора к микросхеме LM3915 проиллюстрировано на рис. 29. Микросхема работает в нестандартном режиме. На ее вход UH, на который в обычном варианте подается нулевое напряжение или низкий уровень, подано напряжение около +9 В, а вход 1)в соединен с общим проводом.
Один из входов однополупериодного выпрямителя на ОУ DA2 подключен к выходу +9 В источника опорного напряжения, поэтому при отсутствии сигнала на его выходе — также +9 В. Все компараторы микросхемы DA1 переключаются и включают соответствующие выходные транзисторы, на выходах DA1 напряжение близко к нулю и все элементы индикатора HL1 погашены.
При подаче на вход выпрямителя переменного напряжения по мере его увеличения напряжение на входе UBX микросхемы DA1 начнет уменьшаться относительно +9 В, компараторы этой микросхемы начнут возвращаться в исходное состояние. Выходные транзисторы микросхемы будут закрываться, что приведет к поочередному включению элементов индикатора. Поскольку вход С/Т DA1 соединен с плюсом питания, индикатор будет работать в режиме «столбик». Режим «точка» для вакуумного люминесцентного индикатора таким относительно простым способом не получить, необходимы инверторы на каждый выход микросхемы DA1.
Аналогично можно подключить вакуумный люминесцентный индикатор к микросхемам LM3914 и LM3916.
Микросхема LM3916, как указывалось в первой части статьи, специально предназначена для контроля уровня аудиосигнала. Шаг индикации у нее составляет 1 дБ в верхней части шкалы и увеличивается до 3 и 10 дБ в нижней части (см. табл. 1 ). Ее основное отличие от ранее рассмотренных LM3914 и LM3915 заключается в номиналах встроенного делителя напряжения, что и обеспечивает специфическую шкалу индикатора. Суммарное сопротивление резисторов делителя и точность порогов микросхемы приведены в табл. 4, остальные параметры указанных микросхем совпадают. Диапазон индикации уровней одной микросхемы LM3916 относительно невелик — +3. -20 дБ с интервалом между двумя нижними уровнями, составляющим 10 дБ. Для расширения диапазона и повышения разрешающей способности в нижней части шкалы возможно каскадирование микросхем, однако не двух LM3916, a LM3916 и LM3915. В нижней части диапазона (от -40 до -13 дБ) будет работать микросхема LM3915 с шагом индикации 3 дБ, в верхней (-10. +3 дБ) — LM3916 с шагом 1 . 3 дБ. Для режима индикации «столбик» достаточно подать на входы этих двух микросхем входные сигналы и опорные уровни в соответствующем масштабе, исключив светодиод уровня -20 дБ микросхемы LM3916. Для реализации режима «точка» небольшая проблема состоит в том, чтобы обеспечить гашение светодиодов микросхемы LM3915, индицирующей уровни -40. -13 дБ, при включении любого из светодиодов LM3916, кроме исключенного -20 дБ. Схема соединения микросхем, решающая поставленную задачу, приведена на рис. 30. Она во многом напоминает схему на рис. 11 , где также указана роль резистора R2. Сигнал для гашения светодиодов микросхемы DA1 поступает с двух последовательно включенных кремниевых диодов VD1 и VD2. В результате при включении любого из светодиодов HL11—HL19 падение напряжения на VD1, VD2 поступит на соответствующий компаратор DA1 и погасит HL10.
Масштабирование входных сигналов можно произвести, по крайней мере, двумя способами. Первый из них проиллюстрирован на рис. 31. Контролируемое напряжение подается на входы UBX обеих микросхем, а отношение их опорных уровней устанавливается 6,31 (16 дБ). В отличие от аналогичного включения двух микросхем LM3915, приведенного на схеме рис. 23 в третьей части статьи, самое низкое пороговое напряжение микросхемы DA1 составляет 56 мВ, что существенно облегчает реализацию узла. Второй вариант масштабирования показан на рис. 32. Так же, как и в индикаторе по схеме на рис. 24, на микросхему DA1 подается усиленный ОУ DA3 входной сигнал, а опорное напряжение обеих микросхем устанавливается одинаковым величиной 10 В. Коэффициент усиления определяется отношением (R4+R5)/R5 = 6,31, т. е. те же 16 дБ.

При установке токов через светодиоды, подключенные к микросхеме LM3916, следует пользоваться рекомендациями, приведенными при описании рис. 25—27. Необходимо, однако, помнить, что типовое значение суммарного сопротивления резисторов внутреннего делителя напряжения микросхемы LM3916 составляет около 10 кОм.
Многие рекомендации, приведенные в этой статье, годятся при построении индикаторов на любой из микросхем семейства. Более подробные сведения о микросхемах LM3914, LM3915, LM3916 можно найти на сайте фирмы-производителя микросхем National Semiconductor www.national.com в документах [5—7].

Литература:
1. С. Бирюков. Два вольтметра на К1003ПП1. — Радио. 2001, № 8, с. 32, 33.
2. С. Бирюков. Логарифмический квазипиковый индикатор на К1003ПП1. — Радио, 2002, № 1, с. 12, 13.
3. С. Бирюков. Приставка к цифровому мультиметру для измерения эффективного напряжения. — Схемотехника, 2003, №4, с.18, 19.
4. С. Бирюков. Преобразователь переменного напряжения в эффективное значение AD736. — Схемотехника, 2003, №4, с.51—55.
5. Даташит LM3914
6. Даташит LM3915
7. Даташит LM3916

Источник

Оцените статью
Adblock
detector