Макс ндз напряжения фазы

Тема: Какие значения напряжений э/сети являются максимумом нормально допустимых ?

Опции темы
Отображение

Какие значения напряжений э/сети являются максимумом нормально допустимых ?

Фазные напряжения на вводе в многоквартирный дом колеблются в районе 240В. В связи с этим вопрос: какие значения напряжений нужно считать максимумом нормально допустимых значений (НДЗ)? Если я правильно понимаю, отклонения не должны превышать 5% от номинального значения напряжения ( есть ещё ограничения по продолжительности этих превышений, но пока не об этом речь). В ГОСТ-21128-83 указано, что номинальным является 220В, но в примечании добавлено, что может быть и 230В. А что именно определяет конкретное номинальное напряжение электросети?

Вам надо смотреть:
СП31-110-2003, п. 9.5. Распределение нагрузок между фазами должно быть, как правило, равномерным; разница в токах наиболее и наименее нагруженных фаз не должна превышать 15% в начале питающих линий.

ГОСТ 13109-97 Нормы качества электрической энергии в системах электроснабжения общего назначения
5.2 Отклонение напряжения
Отклонение напряжения характеризуется показателем установившегося отклонения напряжения, для которого установлены следующие нормы:
— нормально допустимые и предельно допустимые значения установившегося отклонения напряжения dUy на выводах приемников электрической энергии равны соответственно ±5 и ±10 % от номинального напряжения электрической сети по ГОСТ 721 и ГОСТ 21128 (номинальное напряжение);
— нормально допустимые и предельно допустимые значения установившегося отклонения напряжения в точках общего присоединения потребителей электрической энергии к электрическим сетям напряжением 0,38 кВ и более должны быть установлены в договорах на пользование электрической энергией между энергоснабжающей организацией и потребителем с учетом необходимости выполнения норм настоящего стандарта на выводах приемников электрической энергии. Определение указанных нормально допустимых и предельно допустимых значений проводят в соответствии с нормативными документами, утвержденными в установленном порядке.
5.5 Несимметрия напряжений
Несимметрия напряжений характеризуется следующими показателями:
коэффициентом несимметрии напряжений по обратной последовательности;
коэффициентом несимметрии напряжений по нулевой последовательности.
Нормы приведенных показателей установлены в 5.5.1, 5.5.2.
5.5.1 Нормально допустимые и предельно допустимые значения коэффициента несимметрии напряжений по обратной последовательности в точках общего присоединения к электрическим сетям равны 2,0 и 4,0 % соответственно.
5.5.2 Нормально допустимые и предельно допустимые значения коэффициента несимметрии напряжений по нулевой последовательности в точках общего присоединения к четырехпроводным электрическим сетям с номинальным напряжением 0,38 кВ равны 2,0 и 4,0 % соответственно.

ГОСТ 29322-92 Стандартные напряжения.
Номинальные напряжения уже существующих сетей напряжением 220/380 В должны быть приведены к рекомендуемому значению 230/400 В.

Спасибо за исчерпывающий ответ. Но есть ещё вопрос. Один из «общедомовых» эл.счётчиков
— способен вести журнал событий;
-срок его следующей поверки не истёк;
-соответствующим образом зарегистрирован в ЭСО.
Есть его данные о периодах времени, когда напряжения сети превышали НДЗ. Формально эти его показания могут служить аргументом для ЭСО?

Непонятен вопрос. Какой аргумент и чего хотите добиться?

Я электрик в ТСЖ. Жильцы жалуются, что лампы накаливания перегорают так, что 20-тиамперные автоматы срабатывают. Хотим добиться снижения напряжений сети . Сейчас около 240В (бывает больше, бывает меньше). Предвижу вопросы: «а чем измеряли?» , «а поверен ли прибор?» и т.д. Я так понимаю, что даже если номинальное напряжение 230в, то не должно быть длительных превышений 241,5в (+5%) .

Вам надо реконструировать внутренние домовые электрические сети, распределить равномерно нагрузку по фазам, тогда и перепадов не будет.

Так пусть бы эти перепады были в районе хотя бы 230в, а не 240.) К моему сожалению, плохо представляю себе, как равномерно распределить нагрузку в многоквартирном доме. За относительно длительный период времени усреднённые нагрузки более-менее распределены. Но к примеру, по одной и той же фазе нагрузка в течении суток может быть значительно и больше и меньше относительно других. К тому же, к фидеру, питающему дом , подключены и другие потребители.

Перекос фаз проявляется в трехфазных четырех- (пяти-) проводных сетях с глухозаземленной нейтралью. Как правило, низковольтная трехфазная электрическая сеть напряжением 400 В (0,4 кВ) содержит источники электроэнергии, обмотки которых соединены в «звезду» с выведенным нулем. Если трехфазная сеть четырехпроводная, то нулевой проводник выполняет две функции. Первая функция: нулевой рабочий проводник служит для подключения однофазных электроприемников. Вторая функция: нулевой рабочий проводник служит для работы защиты. В пятипроводной сети, каждой из двух перечисленных функций соответствует свой провод.
В низковольтных сетях различают первичные и вторичные источники электроэнергии (источники питания) независимо от способа получения электрической энергии.
К первичным источникам относятся те, которые непосредственно вырабатывают электроэнергию, например электрические генераторы (в качестве привода в них могут быть использованы гидроагрегаты, паровые турбины, дизели, газовые двигатели).
К вторичным источникам относятся те, которые преобразуют электрическую энергию первичных источников, как правило, это трансформаторы, установленные в трансформаторных подстанциях (ТП).

Идеальную модель, отображающую взаимосвязь и взаиморасположение фазных и линейных напряжений можно изобразить в виде равностороннего треугольника с вершинами «А», «B», «С» и центром «0».

Читайте также:  P064100 опорное напряжение датчика а обрыв цепи

Векторы АВ, ВС и CA (лежащие на сторонах треугольника) — это линейные напряжения (380В).
Векторы, проведенные из центра треугольника к его вершинам — 0A, 0B и 0С — это фазные напряжения.
В идеале они равны между собой 0A=0B=0С и сдвинуты друг относительно друга на угол 120°, то есть└A0B=└B0C=└C0A=120°.
Данная модель является идеальной и перекос фазных напряжений в ней отсутствует.

Так как к трансформаторам ТП подключают множество потребителей, в том числе однофазных, то в каждый случайный момент времени можно ожидать, что нагрузки в различных фазах будут различны.
Причем если даже однофазные нагрузки по величине одинаковы, то их включение под нагрузку или отключение не может происходить синхронно. Возникает ситуация RA > RB > RC ≠ 0, где «R» – это сопротивление нагрузки, и, соответственно, «RA» — это сопротивление нагрузки на фазе А, «RB» — это сопротивление нагрузки на фазе B, «RC» — это сопротивление нагрузки на фазе C.

Различие фазных нагрузок по величине и характеру создает условия для возникновения перекоса фазных напряжений.

Если обратиться к описанному выше равностороннему треугольнику, то графически это будет выглядеть следующим образом: точка 0 в центре треугольника, из которой исходят векторы идеальных фазных напряжений величиной 220В 0A, 0B и 0С, — смещается относительно центра треугольника. Назовем ее 0′. Смещаются и сами векторы фазных напряжений на произвольный угол друг относительно друга. Смещенные векторы фазных напряжений 0’A, 0’B и 0’С не равны между собой, 0’A ≠ 0’B ≠ 0’С.

Напряжение на каждой из фаз меняется с величины в 220 В например на 200В, 265В и 195В соответственно. Такая ситуация называется перекосом фазных напряжений. Если бы сопротивления нагрузки были равны, то токи, через них протекающие так же были равны между собой.

Источник

Перекос фаз

Причины возникновения

Нарушение симметричности напряжений в трёхфазной цепи — нежелательная ситуация. Поэтому для того чтобы её устранить, необходимо понять, почему она может возникнуть. Причины перекоса фаз в трёхфазной сети сводятся к основным трём обстоятельствам:

  • неравномерное группирование потребителей;
  • отсоединение нулевого провода;
  • замыкание фазного провода на землю.

При неправильном распределении потребителей в трёхфазной трёхпроводной цепи, напряжение на них будет существенно отличаться. Потребители, обладающие наименьшим сопротивлением, окажутся под повышенным напряжением. Токоприёмники с большим значением сопротивления будут иметь напряжение, не достигающее оптимального значения.

На источниках электроэнергии неравномерное распределение напряжения по фазам скажется в виде увеличенного потребления энергии, повреждений изоляции, износа, сокращение срока службы. При использовании автономного дизельного генератора увеличится расход топлива и охлаждающего вещества.

Снижение качества электрической изоляции для потребителей чревато такими последствиями:

  • повреждение, поломка бытовых приборов или электрической проводки;
  • возникновение пожара;
  • получение травм;
  • выход из строя электроприборов.

Причины возникновения перекоса фаз

Условно причины возникновения перекоса фаз можно разделить на внешние и внутренние.

Внутренние причины связаны с потребителями электроэнергии, которые неравномерно загружают фазы сети без учета мощности однофазных электроприемников, коэффициента одновременности их включения, подключают мощные двухфазные электроприемники к бытовым розеткам.

В реальной жизни причиной перекоса фаз является неравномерность загрузки не только по величине, но и по характеру нагрузки. Нагрузка может быть активной (резистивной) — (R) или реактивной: индуктивной (L) или емкостной (С).

Внешние причины возникновения перекоса фаз могут быть связаны с неисправностями в распределительной сети (например, в высоковольтных линиях электропередач (ЛЭП) при высокой влажности и дефектах в гирляндах изоляторов или разрядников отдельных фаз) или наличием мощных потребителей, включенных на две фазы, т.е. на линейное напряжение (например, потребители тяговых сетей или электродвигатели электропоездов).

Также причины могут быть комбинированными (внешними и внутренними).

По режиму КЗ при напряжении выше 1 кВ не
проверяются:

1. Аппараты и проводники, защищенные плавкими
предохранителями с вставками на номинальный ток до 60 А, — по
электродинамической стойкости.

2. Аппараты и проводники, защищенные плавкими
предохранителями независимо от их номинального тока и типа, — по термической
стойкости.

Цепь считается защищенной плавким предохранителем, если его
отключающая способность выбрана в соответствии с требованиями настоящих Правил
и он способен отключить наименьший возможный аварийный ток в данной цепи.

3. Проводники в цепях к индивидуальным электроприемникам, в
том числе к цеховым трансформаторам общей мощностью до 2,5 МВ·А и с высшим
напряжением до 20 кВ, если соблюдены одновременно следующие условия:

а) в электрической или технологической части предусмотрена
необходимая степень резервирования, выполненного так, что отключение указанных
электроприемников не вызывает расстройства технологического процесса;

б) повреждение проводника при КЗ не может вызвать взрыва
или пожара;

в) возможна замена проводника без значительных затруднений.

4. Проводники к индивидуальным электроприемникам, указанным
в п. 3, а также к отдельным небольшим распределительным пунктам, если такие
электроприемники и распределительные пункты являются неответственными по своему
назначению и если для них выполнено хотя бы только условие, приведенное в п. 3,
б.

5. Трансформаторы тока в цепях до 20 кВ, питающих
трансформаторы или реактированные линии, в случаях, когда выбор трансформаторов
тока по условиям КЗ требует такого завышения коэффициентов трансформации, при
котором не может быть обеспечен необходимый класс точности присоединенных
измерительных приборов (например, расчетных счетчиков); при этом на стороне
высшего напряжения в цепях силовых трансформаторов рекомендуется избегать
применения трансформаторов тока, не стойких к току КЗ, а приборы учета
рекомендуется присоединять к трансформаторам тока на стороне низшего
напряжения.

Читайте также:  В каких случаях можно пренебречь потерей напряжения в проводах

6. Провода ВЛ (см. также 1.4.2, п. 1, б).

7. Аппараты и шины цепей трансформаторов напряжения при
расположении их в отдельной камере или за добавочным резистором, встроенным в
предохранитель или установленным отдельно.

Допустимые нормы значений перекоса

Поскольку в трехфазных сетях предотвратить и полностью устранить перекосы невозможно, существуют нормы несимметрии, в которых установлены допустимые отклонения. В первую очередь это ГОСТ 13109 97, ниже приведена вырезка из него (п. 5.5), чтобы избежать разночтения документа.

Нормы несимметрии напряжения ГОСТ 13109-97

Поскольку, основная причина перекоса фаз напрямую связана с неправильным распределением нагрузок, существуют нормы их соотношения, прописанные в СП 31 110. Вырезку из этого свода правил также приведем в оригинале.

Вырезка из СП 31-110 (п 9.5)

Здесь необходимы пояснения в терминологии. Для описания несимметрии используются три составляющих, это прямая, нулевая и обратная последовательность. Первая считается основной, она определяет номинальное напряжение. Две последние можно рассматривать в качестве помех, которые приводят к образованию в цепях нагрузки соответствующих ЭДС, которые не участвуют в полезной работе.

Расчет токов КЗ для трехфазных сетей

Для того чтобы определить ток трехфазного короткого замыкания в соответствующих сетях, следует обязательно учитывать специфику возникновения и развития этого процесса. Прежде всего, это индуктивность, возникающая в замкнутом проводнике, из-за чего ток трехфазного КЗ изменяется не мгновенно, а нарастает постепенно в соответствии с определенными законами.

Точность производимых вычислений зависит в первую очередь от расчетов основных величин, вставляемых в формулу. С этой целью используются дополнительные формулы или специальное программное обеспечение, выполняющее сложнейшие вычислительные операции за очень короткое время.

Если же расчеты в трехфазных сетях выполняются ручным способом, в таких случаях нужные результаты про ток КЗ формула, приведенная ниже, позволяет определить с достаточно точными показателями:

Iкз = Uc/(√3*Хрез) = Uc /(√3*(Хсист + Хвн)), в которой Хвн является сопротивлением между шинами и точкой КЗ, Хсист – это сопротивление во всей системе относительно шин источника напряжения, Uc – напряжение на шинах в данной системе.

При отсутствии какого-то из показателей, его значение определяется с использованием дополнительных формул или программ. Если же расчеты трехфазного КЗ производятся для сложных сетей с большим количеством разветвлений, в этом случае основная схема преобразуется в схему замещения, где присутствует лишь один источник электроэнергии и одно сопротивление.

Сам процесс упрощения производится в следующем порядке:

  • Складываются все показатели сопротивлений, подключенных параллельно в данной цепи.
  • Далее суммируются все сопротивления, подключенные последовательно.
  • Результирующее сопротивление Хрез определяется как сумма всех подключенных параллельных и последовательных сопротивлений.

Расчеты токов двухфазного короткого замыкания выполняются с учетом отсутствия у них симметричности. У них нет нуля, а присутствую токи, протекающие в прямом и обратном направлении. Таким образом, ток двухфазного КЗ рассчитывается последовательно, по отдельным формулам, используемым для каждого показателя.

Причины возникновения явления

Кроме различных нагрузок, опасный режим эксплуатации может возникать при обрыве нулевого провода. Эту ситуацию можно рассмотреть на примере типового силового трансформатора, обмотки которого соединены по схеме «звезда».

Обрыв нейтрали

Если разорвать цепь, обозначенную на рисунке стрелкой, линия фазы «С» фактически будет выполнять функции нулевого проводника. Именно в этом участке для прохождения тока создаются самые благоприятные условия. По классическим формулам можно посчитать эквивалентное электрическое сопротивление при параллельном соединении нагрузок:

Rэкв = R1*R2*R3/(R1*R2 + R2*R3 + R1*R3).

Если использовать для примера одинаковую величину Rн = 50 Ом, для этого участка Rэкв = 125 000 / (2 500 + 2 500 + 2 500) ≈ 17 Ом.

В новой «нейтрали» напряжение может увеличиться до максимального уровня 380 V. На такой уровень типовая бытовая техника не рассчитана. Одновременно может уменьшиться до 130 V и даже ниже напряжение в связанном контуре линии «А».

Третья типовая причина несимметричности – короткое замыкание фазы на корпус или другую часть конструкции электроустановки, соединенной с заземлением.

Несимметрия в высоковольтных сетях

На выходах генератора, созданного по схемотехнике синхронной машины, стабильность рабочих параметров обеспечивается принципом работы соответствующего оборудования. Однако в некоторых случаях не исключены искажения. Асинхронные ветрогенераторы, например, создают разные уровни напряжений.

В распределительных устройствах подобный дисбаланс – редкое явление. Однако воздушные линии электропередач не создают идеально симметричными. При больших расстояниях увеличивается длина проводников, возрастает разница электрических сопротивлений. Для корректировки по специальной технологии транспозиции устанавливают особые опорные элементы.

Асимметрия на стороне нагрузки

В этой части системы однофазный сварочный аппарат или промышленная плавильная установка способна провоцировать рассматриваемые искажения. В частном домохозяйстве нагрузки не подключают с учетом соблюдения правильной пропорциональности.

Асимметричное распределение потребителей электроэнергии по фазам

Допустимые значения

Действующими правилами ПУЭ и стандартами ГОСТ 32144-2013 установлены предельные отклонения по несимметричному распределению напряжений в сетях 380 V. Контрольные параметры определяются специальными коэффициентами. Предельные значения не должны превышать 2% (4 %) для нулевой (обратной) последовательности, соответственно.

Читайте также:  Напряжение при обрыве фазы звезда

К сведению. Отмеченные определения выражают в векторной форме. В формулах для расчетов реальную систему с имеющимися отклонениями представляют как сумму симметричных компонентов.

Также для контроля применяют максимальное допустимое отклонение измеренных фазных токов. Отдельные нормы утверждены для типовых распределительных устройств:

Способы устранения перекоса фаз

Централизованное решение, позволяющее устранить перекос фаз, отсутствует, так как невозможно обязать всех потребителей подключать одновременно нагрузки, равные по величине и характеру.

Традиционно для обеспечения заданного напряжения на каждой из фаз традиционно используются стабилизаторы напряжения. В бытовых условиях применяют однофазные стабилизаторы напряжения, которые обеспечивают защиты отдельных электроприемников или небольшой их группы. В промышленных условиях используются трехфазные стабилизаторы напряжения различной мощности, которые конструктивно состоят из трех однофазных стабилизаторов напряжения. Принцип их действия таков, что они реагируют на отклонения на каждой отдельно взятой фазе и поднимают или опускают напряжение до необходимого уровня на своей фазе, провоцируя изменения напряжений на двух других фазах и являясь, таким образом, вторичной причиной возникновения перекоса фаз. Из изложенного выше ясно, что трехфазные стабилизаторы напряжения фактически не решают поставленную перед ними задачу, так как сами провоцируют несимметрию трехфазной системы. Помимо своего основного недостатка трехфазные стабилизаторы напряжения потребляют значительное количество электроэнергии и требуют значительных сервисных расходов, так как обладают низкой надежностью – и электромеханические, и электронные стабилизаторы напряжения имеют быстроизнашивающиеся и часто отказывающие детали.

Последствия перекоса фаз

Последствия перекоса фаз проявляются в увеличении электропотребление из сети; в неправильной работе электроприемников, их сбоях, отказах, отключениях, перегорании предохранителей, износе изоляции.

Условно негативные последствия перекоса фаз можно разделить на три группы:

1. Последствия для электроприемников (приборов, оборудования), связанные с их повреждениями, отказами, увеличением износа, уменьшением периода эксплуатации.

а) последствия для однофазных электроприемниковНизкое напряжение вызывает неправильную работу однофазных потребителей: тусклый свет осветительных приборов, длительный нагрев нагревательных приборов, длительный запуск двигательных приборов, сбои в работе компьютеров и т.д. Высокое напряжение вызывает отказы электроприемников из-за износа изоляции, отключение их защитными устройствами, перегорание предохранителей.

б) последствия перекоса фаз для трехфазных электроприемниковОсновную часть трехфазных потребителей (потребителей, питающихся от линейного напряжения) составляют электродвигатели, которые приводят в действие погружные и фекальные насосы, приводы автоматических ворот, станочное оборудование и т.д. Система управления и контроля запуска таких трехфазных потребителей, как правило, подключается к фазному напряжению. При перекосах фаз система управления запуском (СУЗ) электродвигателя, которая контролирует длительность и факт запуска, работает неустойчиво, т.е. спонтанно выдает команды на его пуск или останов. Диапазон изменения фазного напряжения жестко регламентируется эксплуатационной документацией (как правило, не допускается перекос более ± 7,5 ÷ 10 % от номинала). Если перекос превысил допустимый предел, то СУЗ дает сбой. При восстановлении уровня фазного напряжения происходит очередной запуск и так далее.Известно, что режим «пуска в ход» асинхронного двигателя характеризуется кратковременной работой обмоток статора в режиме короткого замыкания (КЗ), т.е. в момент включения двигатель потребляет гораздо больше энергии, чем в процессе работы. Естественно, что частые повторные пуски будут вызывать значительный перегрев изоляции и существенно увеличивать электропотребление из сети. Возможные негативные последствия такого режима работы — либо отказ в запуске, либо отказ оборудования вследствие перегорания обмоток двигателя.

2. Последствия для источников электроэнергии: увеличение энергопотребления, увеличение потерь электроэнергии при питании от госсети; при питании от трехфазного автономного источника – механические повреждения (повреждения подшипников валов, подшипниковых щитов генератора и приводного двигателя, закоксовывание форсунок), уменьшение периода эксплуатации источника, увеличение его износа, повышенный расход топлива, масла, охлаждающей жидкости.

3. Последствия для потребителей, связанные с безопасностью, так как ухудшение качества изоляции может привести к:— электротравматизму;— возгоранию электропроводки или электроприемников;а также последствия, связанные с увеличением расходов на:— электроэнергию;— расходные материалы для генератора;— ремонт электроприемников, поврежденных вследствие перекоса фаз;— приобретение новых электроприемников, отказавших вследствие перекоса фаз.

Основные характеристики ДГР

Дугогасящий реактор (ДГР) – это электрический аппарат, предназначенный для компенсации емкостных токов в электрических сетях с изолированной нейтралью, возникающих при однофазных замыканиях на землю (ОЗЗ). Главным нормативным документом регламентирующим работу, установку и надстройку ДГР является Р 34.20.179.

Дугогасящие реакторы должны подключаться к нейтралям трансформаторов, генераторов или синхронных компенсаторов через разъединители. В цепи заземления реакторов должен быть установлен трансформатор тока. Рекомендуемые схемы подключения ДГР представлены на рис. 4.

Рисунок 4 – Схема подключения ДГР: а) подключение ДГР к трансформаторам СН; б) подключение ДГР к нейтрале силового трансформатора

Индуктивность ДГР подбирается из условия равенства емкостной проводимости сети и индуктивной проводимости реактора. Таким образом, происходит компенсация ёмкостного тока. Ёмкостный ток суммируется в месте замыкания равным ему и противоположным по фазе индуктивным, в результате остается только активная часть, обычно очень малая, это утечки через изоляцию кабельных линий и активные потери в ДГР (как правило, не превышают 5 А), которой недостаточно для возникновения электрической дуги и шагового напряжения. Токоведущие цепи остаются неповреждёнными, потребители продолжают снабжаться электроэнергией.

Современные ДГР имеют различные конструктивные особенности и производятся для огромного диапазона мощностей. В таблице 2 приведен ряд параметров дугогасящих реакторов разных производителей.

Источник

Оцените статью
Adblock
detector