Максимальный рабочий ток трансформатора 400 ква

Максимальный рабочий ток трансформатора 400 ква

В соответствии с «Правилами устройства электро­установок» все силовые трансформаторы должны иметь защиту от коротких замыканий и ненормаль­ных режимов [1]. Для выбора видов защиты и ра­счета их характеристик срабатывания необходимо прежде всего точно знать тип и параметры защищае­мого трансформатора.

Самые важные параметры трансформатора отра­жены в его условном обозначении, которое имеется и в паспорте, и на паспортной табличке, прикрепленной к трансформатору на видном месте. В соответствии с ГОСТ 11677—85 «Трансформаторы силовые» принята единая структурная схема условного обозначения трансформаторов. Буквы в начале обозначают одно­фазный (О) или трехфазный (Т) трансформатор, ука­зывают вид изолирующей и охлаждающей среды (на­пример, буква М соответствует масляному трансфор­матору с естественной циркуляцией воздуха и масла, буква С — сухому трансформатору), а также испол­нение трансформатора и вид переключения ответвле­ний: буква 3 — защитное исполнение, Г — герметич­ное, Н — возможность регулирования напряжения под нагрузкой.

После буквенной части обозначения через тире указывается номинальная мощность трансформатора в киловольт-амперах (кВ-А), затем через дробь — класс напряжения стороны высшего напряжения (ВН) в киловольтах (кВ) и далее через тире — кли­матическое исполнение и категория размещения обору­дования по ГОСТ 15150—69. Согласно этому стандар­ту буквой У обозначают исполнение для умеренного климата, ХЛ — холодного, Т — тропического. Ка­тегории размещения обозначаются цифрами: 1—для работы на открытом воздухе, 2 — для работы в поме­щениях, где температура и влажность такие же, как на открытом воздухе, 3 — для закрытых помещений с естественной вентиляцией, 4 — для работы в поме­щениях с искусственным регулированием климата, 5 — для работы в помещениях с повышенной влаж­ностью.

Например, условное обозначение трансформатора трехфазного масляного с охлаждением при естествен­ной циркуляции воздуха и масла, двухобмоточного, мощностью 250 кВ-А, класса напряжения 10 кВ, ис­полнения У категории 3 (для умеренного климата и закрытых помещений) имеет следующий вид:

Трансформатор трехфазный сухой с естественным воздушным охлаждением при защищенном испол­нении, двухобмоточный, мощностью 400 кВ-А, класса напряжения 10 кВ, исполнения У категории 3 имеет такое условное обозначение:

В паспортной табличке указываются и другие па­раметры трансформатора, необходимые для выбора его защиты:

номинальные напряжения трансформатора (сторон ВН и НН для двухобмоточных трансформаторов);

номинальные токи обмоток ВН и НН;

условное обозначение схемы и группы соединения обмоток;

напряжение короткого замыкания ик (в процен­тах) на основном ответвлении обмотки ВН (для трехобмоточных трансформаторов указывают напряжение короткого замыкания всех пар обмоток).

Номинальные напряжения трансформатора. Транс­форматоры с высшим номинальным напряжением 10 кВ, которым посвящена эта книга, выпускаются с номинальным напряжением стороны низшего напря­жения, равным 0,4 или 0,69 кВ, — для питания элек­троприемников, а также 3,15 или 6,3 кВ, или 10,5 кВ — для связи питающих электрических сетей разных на­пряжений, а иногда и для питания крупных электро­двигателей напряжением выше 1000 В. Например, на подстанции 110/10кВ электродвигатели напряжением 6 кВ могут работать только через трансформаторы 10/6,3 кВ. Однако большинство трансформаторов 10 кВ выпускается с низшим напряжением 0,4 кВ для питания электроприемников напряжением 380 и 220 В.

В обмотке ВН трансформаторов 10 кВ, как масля­ных, так и сухих, предусматривается возможность из­менения напряжения ВН в диапазоне ±5 % номи­нального ступенями по 2,5%. Изменяют напряжения переключением ответвлений обмотки ВН, что произво­дится обязательно при отключении всех обмоток трансформатора от сети. Вид, диапазон и число сту­пеней регулирования напряжения на стороне ВН условно обозначаются буквами и цифрами: ПБВ ± ±2X2,5 %, где ПБВ означает переключение без воз­буждения (в отличие от РПН — регулирования под напряжением, которое выполняется на трансформато­рах более высоких классов напряжения, начиная с 35 кВ).

Номинальные значения мощности и тока. Номи­нальные мощности трансформаторов должны соответ­ствовать ГОСТ 9680—77. Трансформаторы масляные 10 кВ для питания электроприёмников выпускаются с номинальной мощностью до 2,5 MB -А, а для связи между электросетями разных напряжений — до 6,3 МВ-А: например, 25, 40, 63, 100, 160, 250, 400, 630 кВ-А, а также 1; 1,6 и 2,5 МВ-А. Трансформато­ры сухие (ТСЗ) выпускаются с номинальной мощ­ностью 160, 250, 400, 630 кВ-А, а также 1 и 1,6 МВ-А.

Читайте также:  Эта трансформатор силовой 2 5 ква

Мощность (в вольт-амперах) трехфазного транс­форматора при равномерной нагрузке фаз определя­ется выражением

где U номинальное междуфазное напряжение, В; / — ток в фазе, А.

Из выражения (1) по известным из паспортных данных номинальным значениям мощности и напря­жений сторон ВН и НН могут быть определены зна­чения номинальных токов (в амперах) обмоток ВН и НН трансформатора

где S ном. указывается в киловольт-амперах (кВ-А), а U ном — в киловольтах (кВ),

Например, для трансформатора мощностью 400 кВ-А с напряжением стороны ВН, равным 10 кВ, и стороны НН, равным 0,4 кВ, номинальные токи об­моток:

Как правило, во время работы трансформаторы не должны перегружаться, т. е. значения рабочих токов в обмотках трансформатора не должны превышать поминальные. Однако допускаются в определенных пределах кратковременные и длительные перегрузки (§ 2).

Схемы и группы соединения обмоток. Трансфор­маторы 10 кВ выпускаются со следующими схемами и группами соединения обмоток:

звезда — звезда с выведенной нейтралью Y / Y -0; треугольник — звезда с выведенной нейтралью ∆/ Y -11; звезда с выведенной нейтралью — треу­гольник Y /∆-11; звезда—зигзаг Y / Y

Трансформаторы 10/0,4 кВ со схемой соединения обмоток Y / Y -0 подключаются к питающей трехфаз­ной сети 10 кВ, работающей с изолированной ней­тралью, и питают трехфазную четырех проводную сеть с наглухо заземленной нейтралью, в которой номи­нальное напряжение между линейными проводами равно 0,38 кВ, а между каждым линейным и нулевым проводом (нейтралью трансформатора)—0,22 кВ. При симметричной нагрузке всех фаз ток в нулевом проводе (нейтрали) невелик и называется током не­баланса. Значение тока небаланса у трансформаторов Y / Y не должно превышать 0,25 номинального тока обмотки НН во избежание перегрева и повреждения трансформатора (ГОСТ 11677—85). На практике не всегда удается выполнить это условие. По этой и не­которым другим причинам (см. § 4 и 9) трансформа­торы со схемой соединения обмоток Y / Y не должны применяться начиная с мощности 400 кВ-А и более.

Трансформаторы со схемой и группой соединения обмоток ∆/ Y -11 подключаются таким же образом, как и трансформаторы Y / Y -0. Особенность схемы и группы соединения ∆/ Y -11 состоит в том, что между векторами напряжений и токов на сторонах НН и ВН существует фазовый сдвиг на угол 30°, Поэтому трансформаторы ∆/ Y -11 не могут работать параллельно с трансформаторами Y / Y -0, у которых нет фазового сдвига между этими векторами. При ошибочном включении их на параллельную работу фазовый сдвиг на угол 30° между векторами вторичных напряжений этих трансформаторов вызовет уравнительный ток между трансформаторами одинаковой мощности, при­мерно в 5 раз превышающий номинальный ток каж­дого из них.

Благодаря соединению обмотки ВН в треугольник для этих трансформаторов допускается продолжи­тельная несимметрия нагрузки и ток в нейтрали об­мотки НН до 0,75 номинального тока в обмотке НН (ГОСТ 11677—85). Соединение обмотки ВН в тре­угольник обеспечивает также значительно большие значения токов при однофазных КЗ на землю в сети НН, работающей с заземленной нейтралью, чем при питании сети НН через трансформатор с такими же параметрами, но со схемой соединения Y / Y -0. Это способствует падежной работе устройств релейной защиты от однофазных КЗ (§ 3). Поэтому начиная с мощности 400 кВ-А должны применяться трансфор­маторы 10/0,4 кВ со схемой соединения обмоток ∆/ Y -11 (как сухие, так и масляные). Трансформато­ры с этой схемой соединения обмоток могут выпус­каться также с номинальным напряжением обмотки НН, равным 0,69 кВ.

Для связи между сетями разных напряжений и для питания крупных электродвигателей выше 1000 В выпускаются трансформаторы 10/3,15, 10/6,3 и 10/10,5 кВ со схемой и группой соединения обмоток Y /∆-11; некоторые трансформаторы для специального назначения могут иметь схемы соединения Y / Y -0, ∆/∆-0, а также Y /∆-11 (обмотки ВН с выведенной нейтралью применяются в трансформаторах, например для включения дугогасящего реактора в сети 10 кВ с компенсированной нейтралью). Особую группу со­ставляют трансформаторы для собственных нужд электростанций, релейная защита которых в этой книге не рассматривается.

Читайте также:  Чем отличается энергоэффективный трансформатор от обычного

Трансформаторы 10 кВ небольшой мощности для сельских электросетей могут выпускаться с особой схемой соединения обмотки НН, называемой зигзаг. Обмотка ВН при этом соединяется в звезду: Y / Y . Соединение вторичной обмотки понижающего транс­форматора в зигзаг обеспечивает более равномерное распределение несимметричной нагрузки НН между фазами первичной сети ВН. При этом обеспечиваются наиболее благоприятные условия работы трансформа­тора. Для выполнения схемы зигзаг вторичная об­мотка каждой фазы составляется из двух половин, одна из которых расположена на одном стержне магнитопровода, вторая — на другом. Выполнение трансформаторов со схемой соединения обмотки НН в зигзаг обходится дороже, чем со схемой соединения обмотки НН в звезду ( Y / Y ), так как соединение в зигзаг требует большего (на 15%) числа витков об­мотки НН. Это объясняется тем, что ЭДС обмоток, расположенных на разных стержнях, складываются геометрически под углом 120° и их суммарное значе­ние на 15% меньше, чем при алгебраическом сложе­нии ЭДС двух обмоток, расположенных на одном стержне магнитопровода. Чтобы получить ЭДС одного и того же значения при соединении в зигзаг, нужно на 15 % больше витков, чем при соединении обмотки НН в звезду. Из-за большей сложности изготовления и более высокой стоимости трансформаторы звезда — зигзаг применяются редко.

Напряжение короткого замыкания. Этот важней­ший параметр трансформатора необходим для расче­тов токов КЗ на выводах вторичной обмотки НН трансформатора и в питаемой сети НН. Напряжение короткого замыкания соответствует значению между­фазного напряжения, которое надо приложить к вы­водам обмотки ВН трансформатора для того, чтобы при трехфазном замыкании на выводах НН через трансформатор прошел ток КЗ, равный его номиналь­ному значению. Напряжение короткого замыкания обозначается U k и выражается в процентах номиналь­ного значения напряжения обмотки ВН. Если, напри­мер, U k = 5 %, это означает, что к обмотке ВН транс­форматора 10 кВ при закороченной обмотке НН надо приложить напряжение 0,5 кВ, чтобы ток трансфор­матора был равен номинальному.

По значению напряжения короткого замыкания, как следует из определения этого параметра, можно вычислить максимальное значение тока при трехфаз­ном КЗ на стороне НН трансформатора, причем как без учета сопротивления питающей энергосистемы до шин 10 кВ, где включен трансформатор, так и с уче­том этого сопротивления. По значению U k вычисля­ется и полное сопротивление трансформатора Z тр (§ 3). Значения U k приводятся в стандартах, а также в паспортах и на паспортных табличках каждого трансформатора (по результатам заводских испыта­ний). Средние значения U k для масляных трансфор­маторов 10 кВ равны примерно 4,5 % —при мощности до 400 кВ-А, 5,5% — при мощности 630 кВ-А и 1 MB -А и 6,5 % — при мощности более 1 МВ-А. У су­хих трансформаторов мощностью от 160 кВ-А до 1,6 MB -А значения напряжения короткого замыкания равны примерно 5,5 %.

Источник

Трансформатор ТМ(Г)-400/6(10)

Трехфазный силовой масляный трансформатор ТМ-400, ТМГ-400

Трансформаторы масляные ТМ и ТМГ с естественным воздушным охлаждением предназначены для преобразования электрической энергии одного напряжения в электрическую энергию другого напряжения в трехфазных сетях энергосистем и потребителей электроэнергии в составе электроустановок наружного или внутреннего размещения в условиях умеренного (от -45°С до +40°С) климата для исполнения У1 или холодного (от -60°С до +40°С) климата для исполнения УХЛ1.

В трансформаторах типа ТМ температурные изменения объема масла компенсируются за счет маслорасширительного бака, расположенного на верхней крышке трансформатора.

Для предотвращения попадания в трансформатор влаги и промышленных загрязнений при колебаниях уровня масла расширительный бак снабжен встроенным воздухоочистителем.

В трансформаторах типа ТМГ температурные изменения объема масла компенсируются за счет изменения объема бака трансформатора (за счет пластичной деформации гофров бака, размещенных на боковых стенках трансформатора).

Гофрированный бак трансформатора также обеспечивает необходимую поверхность для естественного охлаждения без применения съемных охладителей, что значительно увеличивает надежность трансформатора.

Трансформаторы ТМГ изготавливаются в герметичном исполнении, без маслорасширительного бака. Их внутренний объем не имеет сообщения с окружающей средой, что исключает ухудшение диэлектрических свойств масла вследствие повышения содержания влаги, его окисления и шламообразования.

Читайте также:  Как происходит утилизация трансформаторов

Трансформаторы ТМГ практически не требуют обслуживания в эксплуатации, не нуждаются в профилактических ремонтах и ревизиях в течение всего срока эксплуатации.

Перед запуском в серийное производство гофрированные баки подвергаются механическим испытаниям на цикличность (10000 циклов на воздействие максимального и минимального давлений) для подтверждения их ресурса работы на весь срок службы трансформатора, составляющий 25 лет.

Трансформаторы ТМ-400/6 (10) и ТМГ-400/6 (10) заполнены трансформаторным маслом гидрокрекинга марки ГК (ГОСТ 10121-76) с пробивным напряжением в стандартном разряднике не менее 40 кВ. Допускается при заливке смешивать не бывшие в эксплуатации сорта масла в любых соотношениях.

Структура условного обозначения трансформатора
ТМ(Г)-400-10/0,4 У1, Y/Yн-0

  • Т — трехфазный
  • М — масляный, с естественной циркуляцией масла и воздуха
  • Г — герметичное исполнение с радиаторным баком
  • 400 — номинальная мощность, кВА
  • 10 — высшее напряжение (напряжение на стороне ВН), кВ
  • 0,4 — низшее напряжение (напряжение на стороне НН), кВ
  • У — вид климатического исполнения по ГОСТ 15150-69
  • 1 — категория размещения по ГОСТ 15150-69
  • Y — схема соединения обмотки высшего напряжения (звезда)
  • Yн — схема соединения обмотки низшего напряжения (звезда)
  • 0 — группа соединения обмоток.

Состав и устройство масляного трансформатора
ТМ-400/6 (10), ТМГ-400/6 (10)

Трансформатор состоит из бака с радиаторами, крышки бака, активной части.

Бак трансформатора ТМ и ТМГ состоит из:

  • стенок, выполненных из стального листа толщиной 2,5…4 мм.
    (в зависимости от мощности трансформатора)
  • верхней рамы
  • радиаторов
  • петель для подъема трансформатора

Бак снабжен пробкой для слива масла и пластиной для заземления трансформатора.
Ко дну бака приварены швеллеры, имеющие отверстия для крепления трансформатора на фундаменте. На швеллерах, по заказу потребителя, устанавливаются транспортировочные ролики, позволяющие производить продольное или поперечное перемещение трансформатора (для трансформаторов мощностью 160 кВА и выше).

На крышке трансформаторов ТМ и ТМГ установлены:

  • вводы ВН и НН
  • привод переключателя
  • расширительный бак (на трансформаторах типа ТМ)
  • предохранительный клапан (на трансформаторах типа ТМГ)
  • мембранно–предохранительное устройство

Активная часть трансформатора состоит из:

  • магнитной системы
  • обмоток ВН и НН
  • отводов ВН и НН
  • нижних и верхних ярмовых прессующих балок
  • переключателя ответвлений обмотки ВН.

Активная часть трансформаторов ТМ и ТМГ имеет жесткое крепление с крышкой трансформатора.

Магнитная система плоская шихтованная, со ступенчатым сечением стержня, собрана из пластин холоднокатаной электротехнической стали.

Обмотки многослойные цилиндрические выполнены из провода круглого или прямоугольного сечения с бумажной, эмалевой или стеклополиэфирной изоляцией. Обмотки изготавливаются из алюминиевых обмоточных проводов. Межслойная изоляция выполнена из кабельной бумаги.

Отводы обмотки ВН выполнены из провода круглого или прямоугольного сечения, отводы обмотки НН — из прямоугольной шины.

Нижние и верхние ярмовые балки изготавливаются из гнутых профилей коробчатого сечения или из швеллеров.

Переключатель ответвлений обмоток НН реечный типа ПТР-5(6)-10/63-У1 или ПТР-5(6)-10/150-У1, обеспечивает регулирование напряжения обмотки ВН ступенями по 2.5% при отключенном от сети трансформаторе.

Вводы НН трансформаторов мощностью 400кВА и выше комплектуются контактными зажимами. Трансформаторы меньшей мощности комплектуются контактными зажимами по требованию заказчика. Материал контактного зажима — латунь.

Технические характеристики трансформаторов
ТМ-400/6 (10) и ТМГ-400/6 (10)

Наименование Единица измерения Значение
Номинальная мощность кВА 400
Высокое напряжение (напряжение на стороне ВН) кВ 6 (10)
Низкое напряжение (напряжение на стороне НН) кВ 0,4
Напряжение короткого замыкания % 4,5
Потери короткого замыкания кВт 5,5
Ток холостого хода % 1,6
Потери холостого хода кВт 0,8
Схема и группа соединения обмоток Y/Yн-0; Д/Yн-11; Y/Zн-11

Габариты и вес масляного трансформатора
ТМ-400/6 (10) и ТМГ-400/6 (10)*

Наименование Длина, мм Ширина, мм Высота, мм Масса полная, кг Масса масла, кг
Трансформатор
ТМ-400/6 (10)
1275 1080 1625 1400 350
Трансформатор
ТМГ-400/6 (10)
1230 1080 1610 1400 380

* — габаритные размеры и вес трансформаторов могут отличаться от указаных
в зависимости от производителя

Источник

Оцените статью
Adblock
detector